Физики из Китая и США оценили, как взаимодействуют объекты, расположенные по разные стороны от кротовой норы. Оказалось, что из-за «склеивания» полей на границе «нашего» и «другого» пространства наблюдатели чувствуют электрические, скалярные и гравитационные поля объектов с противоположного края норы. По словам ученых, с помощью найденных эффектов можно проверить, является ли кротовой норой объект Sgr A* в центре Млечного пути. Статья опубликована в Physical Review D, препринт работы выложен на сайте arXiv.org.
Физики делят кротовые норы на проходимые и непроходимые. Непроходимая кротовая нора разрушается быстрее, чем попавший в нее объект успевает выйти с противоположного конца, поэтому внешне почти не отличается от обыкновенной черной дыры. Проходимая кротовая нора потенциально может соединять различные области пространства-времени. В частности, сквозь такую нору может проходить поток поля, создаваемого объектами на противоположных сторонах норы — следовательно, объекты будут чувствовать друг друга задолго до падения в нору. В частности, если поле объектов меняется во времени, наблюдатель поймет, что измеренное им поле не может быть создано статичной черной дырой, и догадается, что он работает с проходимой кротовой норой.
Физики Де-Чан Дай (De-Chang Dai) и Деян Стойковиц (Dejan Stojkovic) превратили эти качественные рассуждения в формулы и оценили, как будут взаимодействовать объекты, расположенные по разные стороны от проходимой кротовой норы. Для этого ученые рассмотрели упрощенную модель кротовой норы — два плоских трехмерных пространства, непрерывно склеенных вдоль сферической внутренней границы. Такая модель полностью игнорирует природу кротовой норы и происходящие внутри нее процессы, однако физики считают, что для внешнего наблюдателя эти детали почти не играют роли. В то же время, ввиду простоты модели полученные в ней результаты можно легко интерпретировать.
Чтобы качественно оценить эффекты от «туннелирования» полей, сначала физики рассмотрели точечный электрический заряд q, расположенный на фиксированном расстоянии A от кротовой норы. Вблизи заряда электрическое поле описывается обычным законом Кулона, однако по мере приближения к границе оно начинает искажаться. Учитывая сферическую симметрию границы кротовой норы, физики разложили поправки к закону Кулона в ряд, каждый член которого степенным образом падал при удалении от норы. Требуя, чтобы потенциал поля и производная по радиальному направлению непрерывно склеивались на границе пространств, физики нашли коэффициенты разложения в пространстве заряда («другое» пространство) и пространстве на противоположном конце норы («наше» пространство).
Оказалось, что из-за туннелирования поля сквозь кротовую нору в «нашем» пространстве она приобретает заряд Q1 = −qR/2A, где R — радиус норы. В «другом» пространстве она приобретает заряд Q2 = −qR/2A. Получается, будто кротовая нора «отбирает» часть заряда и переносит его на противоположный конец норы. Чем ближе заряд расположен к границе кротовой норы, чем сильнее этот эффект. Если заряд к тому же движется, то он может навести в кротовой норе и более высокие моменты — например, при круговом движении нора приобретет кажущийся дипольный момент.
Затем физики рассмотрели немного более реалистичный случай — кротовую нору, соединяющую две черных дыры, то есть два пространства-времени с метрикой Шварцшильда. Очевидно, что такая кротовая нора будет проходима только в том случае, если ее радиус будет больше гравитационного радиуса черной дыры. На фоне такого пространства-времени ученые разместили точечный источник скалярного поля, рассмотрели поправки, возникающие на фоне кротовой норы, и склеили поля на границе норы. Напряженность скалярного поля в «нашем» и «другом» пространстве, рассчитанная при такой постановке задачи, напоминала напряженность электрического поля в более наивном примере. Впрочем, на этот раз эффект был выражен немного слабее. Кроме того, эффект полностью исчезал, если радиус кротовой норы совпадал с гравитационным радиусом черной дыры.
В рамках того же подхода ученые рассмотрели «просачивание» гравитационного поля точечной частицы, расположенной рядом с кротовой норой. В результате физики нашли поправку к ускорению, которое будет испытывать наблюдатель, висящий над кротовой норой в «нашем» пространстве«. Интересно, что в этом случае ускорение оставалось отличным от нуля даже в том случае, если радиус кротовой норы и гравитационный радиус черной дыры совпадали.
Наконец, исследователи предположили, что черная дыра Sgr A*, расположенная в центре Млечного пути, в действительности является кротовой норой с радиусом, примерно равным гравитационному радиусу дыры. Кроме того, ученые предположили, что вокруг кротовой норы в «другом» пространстве по вытянутой орбите вращается звезда с неизвестной массой и длиной большой полуоси. Поскольку такая звезда должна сказываться на движении звезд в «нашем» пространстве, отклонения от предсказаний ОТО могут указать на «кротовую» природу Sgr A*.
Разумеется, при текущей точности наблюдений движение звезд вокруг черной дыры Sgr A* укладывается в рамки Общей теории относительности. Например, если в качестве «пробного» объекта взять звезду S2, ускорение которой в настоящее время измерено с точностью около 0,4 миллиметра на секунду в квадрате, ограничения получаются довольно слабые. Тем не менее, уже в ближайшее время астрономы могут снизить погрешность измерений примерно на один-два порядка. При такой точности на движении S2 будут сказываться более легкие и далекие звезды из «другого» пространства. Поэтому авторы надеются, что с помощью их предсказаний когда-то удастся проверить, является ли Sgr A* кротовой норой.
Сегодня мы писали о еще одной интересной работе, посвященной обратимым кротовым норам: недавно группа ученых под руководством Дяньдяня Вана описали очередной механизм возникновения проходимых кротовых нор, существование которых поддерживается за счет эффектов квантовой теории поля. В своей работе ученые показывают, что кротовая нора может возникнуть после разрыва космической струны, хотя вероятность этого процесса очень мала. Интересно, что путешествие через такую кротовую нору не будет быстрее, чем в обход, то есть не сможет нарушить принцип причинности.
Дмитрий Трунин