Ученые исследовали белок Dsup, который связан с устойчивостью тихоходки Ramazzottius varieornatus к радиации, и выяснили, что он образует «кокон» вокруг нитей ее ДНК. Еще у одного вида тихоходок исследователи тоже нашли белок с аналогичным строением и функциями. В поисках похожих белков у других групп организмов они обнаружили, что некоторые участки белка Dsup напоминают белки HMGN, которые встречаются только у позвоночных, а у других животных их аналогов нет. Причины этого пока неясны, пишут ученые в журнале eLife.
Тихоходки известны своим умением впадать в ангидробиоз (то есть высыхать, а если точнее — «стекленеть») и переживать самые разные экстремальные условия: от перепадов температур до выхода в открытый космос. В частности, они способны выдержать до 1000 летальных для человека доз ионизирующего излучения.
В поисках секрета устойчивости тихоходок к радиации японские ученые расшифровали геном одного из видов — R. varieornatus — и обнаружили там ряд уникальных для этих животных генов. Один из них кодирует белок Dsup (от англ. damage suppressor, снижающий вред), а когда его ввели в клетки человека, оказалось, что они тоже могут приобрести дополнительную устойчивость к действию излучения: в их ДНК образовалось в два раза меньше разрывов. Поэтому исследователи заключили, что Dsup каким-то образом защищает ДНК от повреждений.
Об этом исследовании узнал американец Малаккар Вохрыжек (Malakkar Vohryzek), историю которого недавно рассказали журналисты STAT. Вохрыжек страдает гиперчувствительностью к ультрафиолету, поэтому каждый выход под открытое солнце приносит ему новые родинки, которые угрожают превратиться в меланомы. Вохрыжек воодушевился результатами японских ученых и решил, что Dsup может спасти его от болезни. Сейчас он рассылает письма ученым, биохакерам и биотехнологическим компаниям с просьбой отредактировать его геном и внести туда ген, который кодирует Dsup. Пока на его призывы никто не откликнулся, зато ученые из Калифорнии нашли чем-то похожие на Dsup белки в клетках человека.
Каролина Чавес (Carolina Chavez) и ее коллеги из Калифорнийского университета предположили, что Dsup выполняет свою защитную функцию, непосредственно связываясь с нитями ДНК. Чтобы это проверить, они смешали в растворе молекулы ДНК и Dsup, а затем проверили скорость их движения в геле: ДНК с Dsup «ползла» гораздо медленнее, чем чистая проба ДНК, а значит, вещества связались друг с другом. При этом Dsup взаимодействовал не только с «голой» ДНК, но и с ДНК в составе нуклеосом — в том виде, в котором она находится в клетках эукариот.
Затем исследователи решили проверить, есть ли похожие белки у других тихоходок. Они взяли для примера вид Hypsibius exemplaris, который тоже способен впадать в ангидробиоз. Два года назад его геном отсеквенировали и нашли там ген, который кодировал Dsup-подобный белок: 26,4 процента аминокислот у него оказались общими с Dsup. Ученые сравнили гены, которые кодируют Dsup и его аналог, и обнаружили, что рядом с ними в хромосомах у обоих видов расположены одни и те же гены. Аналог Dsup у H. exemplaris тоже оказался способен связывать ДНК, из чего авторы работы заключили, что эти два белка — ортологи, то есть обладают общими происхождением и функцией.
Далее ученые смоделировали «атаку» на ДНК в пробирке. Они добавляли ДНК в раствор, где шла реакция с выделением гидроксильных радикалов — химически активных веществ, которые образуются в клетках как под действием излучения, так и при окислительном стрессе. В тех пробах, куда добавляли еще и Dsup или его ортолог, разрывов в ДНК было значительно меньше, чем в тех, где защитных белков не оказалось. Таким образом исследователи подтвердили, что Dsup напрямую связывается с ДНК и защищает ее от радикалов.
Известно, что в составе белка Dsup много аминокислот серина, аланина, глицина и лизина. Эти аминокислоты мешают белковой нити сформировать плотный комок, и структура белка остается неупорядоченной. Поэтому ученые предположили, что Dsup обволакивает ДНК, как кокон, и защищает ее — как в высушенном состоянии, так и в растворе.
Наконец, исследователи решили проверить, есть ли аналогичные белки у других организмов. Они обнаружили похожую последовательность только в белках группы HMGN (high mobility group nucleosome-binding) — это регуляторные белки, которые встречаются только у позвоночных. Общим у Dsup и HMGN оказался участок, с помощью которого белки связываются с ДНК. Когда ученые удалили его из молекулы Dsup, белок тут же потерял свою активность и не смог защитить ДНК от гидроксильных радикалов.
Откуда у тихоходок и позвоночных взялся общий участок белка, которого нет у других групп организмов, пока неясно. Авторы работы не исключают, что это может быть результатом конвергенции, но вероятность такого события считают крайне малой.
Тем не менее, исследователи рассчитывают, что более подробное изучение свойств Dsup может помочь «усовершенствовать» клеточные культуры, чтобы те, например, легче переносили хранение и транспортировку и не накапливали повреждения в своей ДНК. О применении же в живых организмах — чего так хотелось бы Малаккару Вохрыжеку — речь пока не идет.
О том, в каких еще условиях выживают тихоходки, читайте в нашем тексте «Тихоходные экстремалы».
Полина Лосева
С помощью модуляции дофаминовой сигнализации
Американские ученые разработали аденоассоциированный вирусный вектор, который несет ген, кодирующий человеческий глиальный нейротрофический фактор (GDNF). Введение этого вектора макакам-резусам с симптомами алкоголизма снижало вероятность злоупотребления алкоголя в течение года. Как сообщается в журнале Nature Medicine, такое изменение в поведении сопровождалось нейрофизиологическими модуляциями дофаминовой сигнализации в прилежащем ядре, которая обычно страдает при хроническом употреблении алкоголя. Несмотря на то, что расстройства, связанные с употреблением алкоголя, наносят огромный экономический и социальный ущерб, существует лишь несколько эффективных фармакотерапевтических средств. При этом не существует подходов, которые бы непосредственно воздействовали на лежащие в основе адаптации нейронные контуры, которые формируются при длительном употреблением алкоголя и лежат в основе алкогольной зависимости. Команда ученых под руководством Кристофа Банкевича (Krystof Bankiewicz) из Университета штата Огайо исследовала, как на эти схемы мог бы повлиять глиальный нейротрофический фактор (GDNF), поскольку известно, что он принимает непосредственное участие в регуляции дофаминергических нейронов (они непосредственно связаны с развитием алкоголизма). Для этого авторы разработали аденоассоциированный вирусный вектор, который несет ген, кодирующий человеческий GDNF. Поскольку неспособность длительно отказываться от алкоголя и неспособность сократить количество потребляемого алкоголя выступают двумя основными проблемами у людей с алкогольной зависимостью, ученые смоделировали такое поведение у макак. Они многократно повторяли циклы ежедневного опьянения с последующим воздержанием от алкоголя. Когда необходимые паттерны поведения были достигнуты, макаки-резусы четыре недели пили воду вместо этанола. Затем каждой обезьяне в мозг вводили либо экспериментальный, либо контрольный вектор. Через два месяца макакам возобновили доступ к алкоголю на четыре недели. В общей сложности ученые шесть раз повторили циклы принудительного воздержания и повторного введения алкоголя, чтобы смоделировать подобные циклы. Экспериментальный вектор значительно снижал потребление алкоголя в периоды повторного введения алкоголя в течение года (р ≤ 0,001). Причем у макак из экспериментальной группы наблюдалось снижение максимальной дозы потребляемого алкоголя уже в первый день после абстиненции (р ≤ 0,0001). Магнитно-резонансная томография и гистологические исследования тканей мозга показали, что лечение вектором с GDNF восстанавливало дофаминергическую функцию в прилежащем ядре, которая обычно снижена в мезолимбической системе после хронического употребления алкоголя. Повышенная экспрессия GDNF увеличивала доступность и использование дофамина в пути вознаграждения макак до значений, сравнимых со здоровыми макаками. Это доклиническое исследование показывает возможность нового подхода к лечению алкоголизма — с помощью генной терапии. Дальнейшие исследования будут направлены на изучение подробного профиля безопасности препарата у животных. Недавно мы рассказывали, что тягу к алкоголю (и другим веществам) можно зафиксировать с помощью функциональной магнитно-резонансной томографии.