Ученые из США и Китая создали материал с рекордно малым коэффициентом отражения среди материалов с широким спектром поглощения. Он состоит из алюминиевой подложки с множеством углублений, на которой располагается массив вертикальных углеродных нанотрубок, поглощающих излучение и превращающих его в тепло. Измерения показали, что коэффициент отражения нового материала составляет от 10-5, что на порядок ниже, чем у ближайшего аналога, рассказывают авторы статьи в ACS Applied Materials & Interfaces.
Существуют материалы, способные поглощать практически весь падающий на них свет. Они имеют множество применений как в науке, так и вне ее. Например, их предлагают применять в гравитационных интерферометрах, таких как LIGO и Virgo, в которых рассеянный свет может привнести шум в сигнал на детекторе. Кроме того, эти материалы используют в искусстве, к примеру, для создания инсталляций или черных автомобилей.
Самый известный из таких материалов — это Vantablack, разработанный в 2014 году британскими материаловедами. Его название происходит от аббревиатуры VANTA, которой принято обозначать вертикально-ориентированные массивы нанотрубок. Они представляют собой множество углеродных нанотрубок, размещенных на подложке, обычно с помощью метода химического осаждения из газовой фазы.
Кэхан Цуй (Kehang Cui) из Массачусетского технологического института (MIT) и Шанхайского университета Джао Тонг и его коллега Брайан Уордл (Brian Wardle) из MIT разработали метод поверхностной активации алюминиевых подложек, позволивший получить рекордно черный материал.
Сначала с алюминия необходимо удалить оксидную пленку, образующуюся на нем при контакте с воздухом. Для этого алюминиевую фольгу помещали в сосуд с 10-процентным раствором хлорида натрия и подвергали воздействию ультразвука. Благодаря этому с поверхности алюминия удалялся оксид и на ней образовывалась пористая структура с множеством хаотично расположенных углублений. После этого фольгу промывали в воде и этаноле, а затем наносили на нее слой ацетатов железа и кобальта.
Эти соли выступают в качестве катализаторов для следующего этапа, на котором на поверхности алюминия выращивали массивы нанотрубок. Алюминий помещали в камеру с аргоном, ацетиленом и углекислым газом. Благодаря нагреванию до температур от 400 до 600 градусов Цельсия на поверхности металла происходила реакция окислительного дегидрирования, при которой атомы углерода из газа образовывали нанотрубки.
После получения материала ученые измерили его оптические свойства. Оказалось, что в диапазоне от терагерцевого до ультрафиолетового материал имеет коэффициент отражения на уровне от 10-4 до 10-5. Это примерно на порядок меньше, чем тот же параметр у предыдущего рекордно черного материала, разработанного в 2010 году учеными из Национального института стандартов и технологий США (NIST). Кроме того, они показали, что этот параметр практически не зависит от угла падения света.
Существуют и неуглеродные материалы с крайне высоким коэффициентом поглощения. Например, в 2015 году саудовские ученые создали такой материал на основе золота. Он состоит из множества золотых наночастиц необычной формы, которые выступают в качестве массива волноводов, не дающих попавшему на них свету покинуть этот массив.
Григорий Копиев
Гидрогели показали способность к саморегуляции
Финские исследователи разработали систему из двух расположенных рядом гидрогелей, которая способна к саморегуляции и поддерживает свою температуру в узком диапазоне значений несмотря на меняющиеся внешние условия — прямо как живые организмы. Ученые поместили два гидрогеля в стеклянную трубку и светили на один из них лазером. Затем пучок света отражался от зеркала и нагревал второй гель, который передавал тепло первому. Он мутнел и переставал пропускать луч, а вся система охлаждалась. Тогда процесс начинался снова. Это не только сохраняло стабильное состояние материала, но и позволило ученым создать несколько интересных механизмов, которые динамически реагируют на окружающую среду и даже прикосновения. В статье, опубликованной в журнале Nature Nanotechnology, они говорят, что такая технология — важный шаг в развитии интерактивных материалов и мягкой робототехники. Способность открытой системы сохранять относительное постоянство своего внутреннего состава и свойств при взаимодействии с окружающей средой называют гомеостазом. Для его поддержания биологические структуры от отдельных клеток до целых организмов используют петли обратной связи — ответные реакции на действие внешних факторов. Например, люди сохраняют температуру тела, которая вне зависимости от сезона или времени суток колеблется в небольшом промежутке значений от 36,6 до 37 градусов. Если становится слишком жарко, мы потеем, чтобы остыть. Также в постоянном диапазоне находятся наше кровяное давление и частота сердечных сокращений. Другой пример — циклические колебания интенсивности различных биологических процессов, связанные со сменой дня и ночи, у животных и растений, которые называют циркадными ритмами. Эти гомеостатические системы делают живые организмы устойчивыми к изменению внешних условий. Подобные биологические процессы в биологических организмах, например то, как растения реагируют на механические раздражители, вдохновляют исследователей на создание динамических синтетических материалов. Например, исследователи прогнозируют создание материи, которая может взаимодействовать с окружающей средой, реагируя на внешние раздражители и адаптируя свою внутреннюю структуру. Однако для того, чтобы имитировать поведение живых организмов в неравновесных условиях, нужно достичь большего понимания физических и химических реакций в петлях обратной связи гомеостатических систем. Шаг к созданию материалов нового поколения сделали ученые из Университета Аалто и Университета Тампере под руководством Хан Чжана (Hang Zhang) и Хао Цзэна (Hao Zeng). Они разработали систему, состоящую из двух расположенных рядом гидрогелей с разными свойствами, которые взаимодействуют между собой и сохраняют свое состояние, в данном случае — температуру, в пределах узкого диапазона значений. При этом даже сами гели, состоящие из мягких полимеров, набухающих в воде, похожи на ткани организмов — как правило, мягкие, эластичные и деформируемые. Ученые ковалентно поместили два сопряженных нанофункционализированных гидрогеля в стеклянную трубку, чтобы предотвратить набухание. Через один из гелей, чувствительный к температуре и состоящий из термочувствительного полимера Поли(N-изопропилакриламид) с наноканалами, проходил лазерный луч. При температуре первого геля ниже нижней критической — около 36 градусов — он прозрачен. Лазерный пучок с длиной волны 532 нанометров беспрепятственно проходит через него. Затем свет отражался от зеркала, которое закрепили перед системой, и попадал на второй, светопоглощающий полиакриламидный гель, содержащий наночастицы золота. Они нагревались и гель постепенно передавал тепло первому гелю, который, соответственно, постепенно нагревается. Однако как только температура превышала нижнюю критическую, происходил фазовый переход, и гель начинал терять свою прозрачность. Это изменение не позволяло лазеру проникать через него и достигать зеркала, а соответственно, нагревать второй гель. В результате оба гидрогеля начинали охлаждаться до тех пор, пока первый снова не становился прозрачным, пропускал луч света, и весь процесс начинался снова. В результате расположение лазера, гелей и зеркала создавало петлю обратной связи, которая поддерживала определенную температуру системы — она колебалась, но оставалась в пределах небольшого и устойчивого к внешним стимулам диапазона. Для того, чтобы проверить эту устойчивость, ученые имитировали влияние на систему распространенных явлений естественной среды — ветра и воды. Они охлаждали гели с помощью направленного потока воздуха, и даже слабый воздушный поток 0,3 ± 0,1 метра в секунду приводил к увеличению среднего значения и амплитуды температуры нагрева, при этом температура в точке пропускания осталась на уровне около 36 градусов — система адаптировалась, компенсируя потери тепла. Также исследователи изменяли мощность луча лазера и расстояние между пятном нагрева и точкой пропускания. Эффект был таким же. Так они доказали, что чрезмерно сильные стимулы могут временно вывести систему из устойчивого состояния, но после их устранения она возвращается к начальным условиям. Ученые попробовали использовать различные красители, которые служили индикаторами достижения гелями определенных температур — так они продемонстрировали потенциал разработки для визуальной сигнализации. Они продвинулись еще дальше и в ряд разместили на трубках жидкокристаллические эластомеры, которые выглядели как вертикальные плавники и деформировались при нагреве трубок. Циклические колебания температуры системы заставляли плавники двигаться, но не синхронно, а с задержкой в несколько секунд, поскольку находились они на разных расстояниях от пятна нагрева. Когда на вершинах плавников разместили маленький кусок бумаги, из-за колебаний он стал горизонтально смещаться. Скорость поступательного движения была всего 200 микрометров в минуту, но так ученые показали, что их разработку можно использовать для создания автономных активных транспортных систем. Затем исследователи создали две системы, которые реагируют на механические раздражители. Определенное прикосновение к гелям выталкивало их из устойчивого состояния, а происходящее в результате изменение температуры вызывало деформацию механических компонентов, расположенных на трубке. В одном случае реакцию и деформацию механического компонента вызывало одно прикосновение — так же мимоза стыдливая (Mimosa pudica) складывает листья при поглаживании. В другом — только на повторяющиеся прикосновения, такой механизм напоминает венерину мухоловку (Dionaea muscipula), которой нужно дотронуться дважды за 30 секунд, чтобы она захлопнулась. В результате система вела себя гомеостатически, как живой организм, а проведенные эксперименты продемонстрировали, что ее можно использовать при создании автономных датчиков, умных материалов или мягких роботов. Гидрогели пригождаются ученым в самых разных сферах. Например, они могут поглощать воду из воздуха, помогают перенести фрагменты мягких тканей без повреждения и даже повышают эффективность вакцин.