Астрономы теоретически исследовали потенциальную возможность обеспечения фотосинтеза отраженным светом. Авторы рассмотрели несколько ситуаций, в том числе отраженный от луны свет, падающий на обращенную от звезды сторону планеты, и отраженный от планеты-гиганта свет, падающий на ее спутник. Ученые пришли к выводу, что подходящие условия могут существовать во множестве систем, результаты представлены в препринте на arXiv.org.
Фотосинтез, то есть использование энергии солнечного излучения для получения необходимых органических веществ, является основой функционирования подавляющего большинства экосистем на Земле. Однако помимо ключевой роли для всей биосферы, фотосинтез также обладает последствиями планетарного масштаба, так как появление оксигенного фотосинтеза привело к принципиальному изменению состава атмосферы и условий на поверхности Земли.
В связи с этим считается, что присутствие молекулярного кислорода в газовой оболочке экзопланеты может быть значимым указанием на наличие живых форм, так как из-за высокой активности кислород необходимо постоянно выделять, что крайне маловероятно в неживой природе. Еще одним потенциальным маркером фотосинтезирующей жизни является красный барьер, то есть резкое повышение отражательной способности биомассы при переходе в ближний инфракрасный диапазон, хотя для наблюдения похожего эффекта жизнь должна быть относительно похожа на земную.
Однако даже среди уже известных экзопланетных систем попадаются ситуации с принципиально отличающимися от земных условиями. В этой связи возникает вопрос о более общих условиях возможности возникновения фотосинтеза, в том числе никогда не достигавшихся на нашей планете. Американские астрофизики под руководством Абрахама Лёба (Abraham Loeb) из Гарвардского университета исследовали вопрос о теоретической возможности протекания фотосинтеза с использованием лишь отраженного света.
Авторы рассмотрели две возможные конфигурации. В первой участвует планета в приливном захвате с родительской звездой — тот же самый эффект, который объясняет невозможность наблюдения обратной стороны Луны с поверхности Земли. Такая ситуация возникает при сильном приливном взаимодействии, что, как правило, происходит на небольших расстояниях. В таком случае противоположная звезде сторона планеты будет в постоянной тени. Однако при наличии крупного спутника возможно поступление заметного количества отраженного от него света. Вторая обсуждаемая конфигурация включает ночную сторону крупной экзолуны на орбите вокруг планеты-гиганта.
Ученые провели анализ с большим количеством упрощений. В частности, они предполагали круговые орбиты, равный получаемому Землей от Солнца поток излучения, фиксированный диапазон пригодных для фотосинтеза длин волн, оптически тонкие атмосферы обитаемого мира, конкретное значение альбедо (0,2 несколько больше, чем у Луны) и звезду, похожую на Солнце, или относящуюся к спектральным классам K и M.
Авторы пришли к выводу, что подходящие условия могут складываться. В первом случае для этого нужна достаточно большая экзолуна (не менее половины радиуса Луны), так как в противном случае она должна обращаться очень близко, что приведет к ее разрушению. Во втором случае, если планета-гигант будет похожа на Юпитер, а спутник — на Землю, то фотосинтез теоретически возможен при расстоянии между телами в диапазоне от 10 до 30—70 (в зависимости от типа звезды) радиусов Юпитера.
Астрономы заключили, что в пространстве параметров размеров тел и расстояний между ними можно найти достаточно большую область, в которой свойства оказываются благоприятными для фотосинтеза. Тем не менее, активность подобной гипотетической биосферы может быть гораздо ниже, чем у Земли: чистый прирост первичной продукции может быть на 5 порядков меньше. Также подобная ситуация крайне маловероятна у самых распространенных и легких звезд с массой не более 0,2 солнечных, так как из-за близости к светилу экзолуна будет испытывать большие возмущения и не сможет достаточно долгое время находиться на стабильной орбите.
Ранее ученые нашли первый пример организма с генами для хлорофилла и без фотосинтеза, открыли превращающие свет в электричество камни, собрали в искусственной клетке аппарат фотосинтеза и предложили терраформировать Марс теплицами из аэрогеля.
Тимур Кешелава
Она вспыхнула в 1987 году
Инфракрасный космический телескоп «Джеймс Уэбб» получил изображение остатка сверхновой 1987A в Большом Магеллановом Облаке. На снимке заметны ранее не наблюдавшиеся серповидные структуры из газа, выброшенного при взрыве звезды, сообщается на сайте телескопа. Сверхновая 1987A вспыхнула 23 февраля 1987 года в галактике-спутнике Млечного Пути Большое Магелланово Облако из-за коллапса ядра голубого сверхгиганта в туманности Тарантул, являющейся огромной областью звездообразования. Она стала самым близким подобным катаклизмом из всех наблюдавшихся с момента изобретения телескопа, кроме того, от вспышки были впервые зарегистрированы нейтрино. Разлетающиеся фрагменты звезды наблюдаются уже более 40 лет при помощи различных наземных и космических телескопов. Новое изображение остатка сверхновой было получено при помощи камеры ближнего инфракрасного диапазона NIRCam и набора узкополосных фильтров. Центральная часть туманности заполнена плотными комками газа и пыли, считается, что в ней находится плерион и связанная с ним нейтронная звезда. Затем идет яркое кольцо, возникшее из вещества звезды, выброшенного перед взрывом. Оно содержит горячие точки, образованные взаимодействием околозвездного вещества с ударной волной. Еще дальше видны не наблюдавшиеся ранее небольшие серповидные структуры, содержащие выброшенный при взрыве газ, а в самых внешних частях остатка заметны два тусклых кольца — световое эхо от вспышки, возникшее на газопылевых облаках в окрестностях остатка. В дальнейшем «Джеймс Уэбб» продолжит исследование остатка 1987A при помощи инструментом NIRSpec и MIRI, чтобы узнать больше о строении туманности и подтвердить наличие в ней нейтронной звезды. Ранее мы рассказывали о том, как астрономы рассмотрели остаток сверхновой 1987A в FM-диапазоне.