Физики экспериментально исследовали свойства тонких пленок из высокотемпературного сверхпроводника и обнаружили в них двойное изменение знака коэффициента Холла с уменьшением температуры, причем одно из них происходило еще до достижения критической температуры перехода. Это подтверждает созданную более 20 лет назад теорию о поведении высокотемпературных сверхпроводников, которую до этого невозможно было проверить из-за технологических ограничений. Авторы считают полученные результаты справедливыми для всех сверхпроводников, что может помочь продвинуть понимание этого феномена. Статья опубликована в журнале Physical Review Letters.
Сверхпроводимость — это макроскопическое квантовое явление, заключающееся в фазовом переходе некоторых материалов ниже определенных температур в новое состояние, в котором они проводят электрический ток без сопротивления. Сегодня известно множество различных сверхпроводников, к которым относятся как чистые вещества из одного химического элемента, так и сложные соединения.
Полноценной теории сверхпроводимости на данный момент нет. В частности, это затрудняет поиск веществ со все большей критической температурой, ниже которой наступает фазовый переход. Сегодня рекордные значения температур находятся в области 140 кельвин (порядка -140 градусов Цельсия) для нормальных условий и около 203 кельвин (-70 градусов Цельсия) при высоких давлениях.
Эффект Холла — это возникновение поперечной разности потенциалов в проводнике, находящемся в магнитном поле. В простейшем случае это явление объясняется силой Лоренца, действующей со стороны магнитного поля на носители зарядов в токе. Она отклоняет заряды в ту или иную сторону в зависимости от их знака, что приводит к их накоплению у краев проводника и появлению разности потенциалов. В зависимости от типа носителей заряда в конкретном веществе эффект Холла может быть положительным или отрицательным.
Сверхпроводимость специфическим образом взаимодействует с эффектом Холла, приводя к его инверсии при переходе вещества в сверхпроводящее состояние. В результате холловское сопротивление и величины соответствующих потенциалов меняют знак, как будто в веществе сменился тип носителей заряда. Несмотря на то, что эффект Холла нашел множество технологических применений, в том числе как метод исследования потенциальных сверхпроводников, физическая суть инверсии оставалась не до конца понятной.
В 1995 году Михаил Фейгельман, Вадим Гешкенбейн, Анатолий Ларкин и Валерий Винокур опубликовали теоретическую статью, в которой подробно изучили вопрос инверсии эффекта Холла в высокотемпературных сверхпроводниках. В работе рассматривалось влияние возникающих в сверхпроводнике магнитных вихрей на движение электронов. Однако в получившиеся выражения входило множество параметров, которые было невозможно определить из эксперимента на существовавшем тогда уровне развития науки, из-за чего результат было невозможно проверить.
Коллектив ученых из США, Японии и России с участием Валерия Винокура в новой работе экспериментально исследует тонкие пленки высокотемпературного сверхпроводника из класса висмут-стронций-кальциевых купратов (BSCCO) Bi2.1Sr1.9CaCu2.0O8+δ. Физики подробно изучили эффект Холла в зависимости от количества слоев в образце и внешней температуры. Уменьшение толщины позволило получить квазидвумерный материал, в котором влияние интересовавших авторов эффектов увеличивается.
Одним из непроверенных ранее предсказаний теории было наличие инверсии эффекта Холла вне области сверхпроводимости. Для наиболее детально изученного случая материала толщиной в две элементарные ячейки, для которого критическая температура перехода составляет 81 кельвин, инверсия наблюдалась также и на 5 кельвинах выше этой температуры. Полученные данные впервые предоставили возможность количественной проверки теории 1995 года. Результаты экспериментов оказались в согласии с теоретическими предсказаниями.
Также ученые отмечают, что синтез использованных тонких пленок сверхпроводников является отдельным технологическим достижением, на осуществление которого физикам потребовалось пять лет. Они считают, что подтверждение старой теории о влиянии магнитных вихрей продвинет понимание электронных свойств, в особенности в случае высокотемпературных сверхпроводников
Физики раньше уже добивались контролируемой инверсии эффекта Холла — для этого они использовали микроструктурированную кольчугу, которая представляла собой метаматериал, имитирующий другой тип носителей заряда. В другой работе физики научились закручивать магнитные вихри для спинтроники.
Тимур Кешелава
Это поможет добывать руду и обрабатывать ядерные отходы
Европейские физики теоретически и экспериментально исследовали цикличные процессы всплытия и опускания на дно зерен арахиса в пиве, который называют «танец арахиса». Для этого они в течение двух с половиной часов снимали на камеру этот процесс в лаборатории. Анализируя эти результаты, ученые выяснили, что танец происходит из-за поверхностных свойств арахиса, на которых образование пузырьков предпочтительнее, чем на стенках стакана. Исследование опубликовано в Royal Society Open Science. В России распространен фокус, который показывают на вечеринках с шампанским. Для этого в полный бокал игристого напитка бросают изюминку, кусочек ананаса или дольку шоколада. Брошенное в жидкость тело сначала тонет, но затем всплывает под действием пузырьков газа, зародившихся на его краях. У поверхности пузырьки разрушаются и цикл повторяется. В аргентинских барах существует такая же традиция, только вместо шампанского там используют пиво, а вместо изюма — арахис. Там этот трюк получил название «танец арахиса». Несмотря на качественное понимание такого танца, физики плохо понимают его детали. Вместе с тем, такие процессы происходят не только на вечеринках или в барах, но и в природе: предполагается, что именно так плотный магнетит всплывает в магме. Похожим же образом горняки отделяют железо от руды. Разобраться в этом вопросе решили Луис Перейра (Luiz Pereira) из Университета Людвига Максимилиана и его коллеги из Англии, Германии и Франции. Для этого они провели экспериментальны с арахисом в пиве и подтвердили их результаты численными вычислениями. Физики наполняли резервуар размером 100 × 100 × 200 миллиметров одним литром лагера и опускали в него 13 обжаренных зерен арахиса Arachis hypogaea. Весь процесс они снимали на цифровую камеру. На начальном этапе все зерна плавали на поверхности из-за активного образования пузырей в перенасыщенном углекислом газом пиве. Примерно через 25-30 минут количество пузырьков уменьшалось и арахис начинал цикличное движение вверх и вниз под действием описанного выше механизма. Танец всех зерен прекратился примерно через 150 минут после начала эксперимента — количество газа, растворенного в пиве, опустилось ниже пороговой отметки. Для анализа результатов эксперимента авторы разбили задачу на три части: зарождение пузырьков, плавучесть и цикличность. Для этого им потребовалось знать капиллярные свойства системы, такие как плотность пива и газа, поверхностное натяжение, углы смачивания и так далее. Первое они рассчитали с помощью пивного онлайн калькулятора, второй — взяли из литературы, а для получения информации об углах ученым потребовалось провести дополнительные эксперименты по смачиванию пива стеклом и плоской частью арахиса. В результате физики смогли воспроизвести основные особенности поведения арахиса в пиве, которые они увидели в эксперименте. Так, они доказали, что арахис обладает поверхностью, на которой образование пузырей энергетически более выгодно, чем на стенках стакана. Если бы это было не так, танец арахиса был бы невозможен. Ученые отмечают, что арахис в пиве может служить модельной системой не только для задач геологии и добычи полезных ископаемых, но и в обработке ядерных отходов. Один литр пива — это не так много, когда речь идет о физическом эксперименте (впрочем, не только). То ли дело 30 литров! Именно столько потратили физики из Германии и Кореи, изучая стабильностью пивной пены при розливе «снизу-вверх».