Физики сгенерировали рекордно мощные импульсы терагерцового излучения

DESY, Lucid Berlin
Ученые разработали новый метод генерации терагерцового излучения, который позволяет получать импульсы с суммарной энергией 0,6 миллиджоулей, что на порядок больше предыдущих рекордов. Разработка открывает возможность создания компактных ускорителей частиц, пишут ученые в журнале Nature Communications.
Терагерцовый диапазон электромагнитного излучения располагается между микроволновыми и инфракрасным, обычно его границы определяют от 0,1 до 30 терагерц (1012 герц). Этот диапазон также называют субмиллиметровым, так как это излучение с длинами волн от 3 до 0,01 миллиметра. Эти волны (их называют также Т-лучами) используют в медицине и сфере безопасности — они позволяют просвечивать багаж и одежду, но не опасны для здоровья, в отличие от рентгеновского излучения. Существует ряд научных применений терагерцовым волнам (спектроскопия), а также технологические — для передачи данных.
Особый интерес к Т-лучам во многом связан с тем фактом, что именно на этих частотах происходят многие физические процессы, например движения валентных электронов в твердых телах, вращение молекул, вибрации кристаллических решеток, прецессии спинов и другие. С одной стороны, использование такого излучения позволяет наблюдать эти процессы, а с другой — вмешиваться и управлять ими.
Одно из фундаментальных применений терагерцового излучения — ускорение заряженных частиц. Этот перспективный способ теоретически позволяет достичь набора энергии на уровне гигаэлектронвольт на сантиметр, что на порядки лучше, чем у современных ускорителей. В рамках данного направления существует несколько подходов: для некоторых нужны широкополосные импульсы излучения, которые одновременно содержат колебания на многих частотах, а для других нужны узкополосные сигналы, содержащие частоты в диапазоне порядка 1 процента от центральной. Если первая технология уже достаточно развита и ученые могут превращать оптическое излучение в терагерцовое с эффективностью порядка 1 процента, то во втором случае этого сделано не было.
В работе под руководством Андреаса Майера (Andreas Maier) и Франца Кертнера (Franz Kärtner) из Гамбургского университета предлагается новый способ генерации узкополосных импульсов, который оказался в 13 раз эффективнее предложенных ранее. Метод основан на эффекте генерации разностной частоты (DFG, difference-frequency generation) в оптически нелинейном двулучепреломляющем кристалле ниобата лития со специфической структурой из перемежающихся слоев с разной ориентацией.
Для получения терагерцового сигнала два импульса лазера оптического диапазона с небольшой временной задержкой направляются на кристалл. Обычно для этого генерируется два одинаковых импульса, один из которых движется по слегка более длинному пути. Импульсы необходимо создавать с частотным градиентом, так что в начале у них находятся низкие частоты, а потом следуют высокие, из-за чего в каждый момент времени разность частот между импульсами находится в терагерцовом диапазоне. Благодаря эффекту DFG на выходе кристалла получается нужное излучение.
«Необходимые изменения одного импульса минимальны и удивительно просты в реализации: для этого достаточно включения в схему специальных зеркал, — поясняет Майер. — Оказалось, что это усиливает терагерцовый сигнал в 13 раз».
В результате ученым удалось создать импульсы с энергией 0,6 миллиджоулей с центральной частотой 0,361 терагерц и шириной полосы в 1 процент. Это рекорд для метода на основе эффекта генерации разностной частоты, и на порядок больше, чем для любого другого метода получения узкополосных терагерцового импульсов. Авторы считают, что достижение показывает потенциальную возможность создавать достаточно мощные импульсы для использования в компактных ускорителях частиц.
Ранее ученые впервые создали лазер на органическом диоде с прямой накачкой током, зарегистрировали терагерцовое излучение воды и заглянули с его помощью под изоляцию тросов.
Тимур Кешелава