Лабораторные эксперименты, имитирующие воздействие солнечного ветра и ударов микрометеоритов по лунному грунту, показали возможность синтеза воды на изначально абсолютно сухих частицах минералов. В работе с описанием результатов опытов впервые предложена полноценная схема появления воды на ближайшем небесном теле, пишут авторы в журнале Proceedings of the National Academy of Sciences.
За последние годы ученые собрали убедительные доказательства наличия воды на Луне, особенно в полярных областях. В различных наблюдениях были обнаружены свойственные молекулам воды линии поглощения в инфракрасной области, а на залежи льда указали как данные радарного сканирования с наземных радиотелескопов, так и результаты нейтронной спектрометрии, осуществленной автоматическими спутниками.
Потенциально существует множество вариантов появления воды на Луне. Во-первых, вода может изначально входить в состав слагающих ее пород, выделяясь в чистом виде при попадании на поверхность посредством геологических процессов. Во-вторых, ее могли занести падающие кометы и богатые водой астероиды. В-третьих, она может синтезироваться непосредственно на поверхности под воздействием различных космических процессов.
Существуют наблюдательные указания в пользу последнего варианта. В частности, зонд Moon Mineralogy Mapper показал присутствие молекул воды или радикалов гидроксила (OH) на всех широтах и типах почв. Эти данные стали мотивацией для проведения множества лабораторных экспериментов по облучению протонами с энергией в несколько килоэлектровольт силикатов, из которых состоит грунт на поверхности Луны. Однако результаты этих опытов были противоречивыми.
В работе под руководством Чэна Чжу (Cheng Zhu) из Гавайского университета в Маноа описываются результаты новых лабораторных экспериментов. В одной серии опытов ученые облучали ионами дейтерия с энергией 5 килоэлектровольт в условиях сверхвысокого вакуума безводный минерал оливин [(Mg,Fe)2SiO4], который входит в состав лунного реголита и обычно используется в качестве его замены. В другом эксперименте обработанные таким способом образцы также подвергали воздействию лазерного излучения, что имитировало нагрев от попадания микрометеорита.
Отдельно бомбардировка дейтерием при температуре в 10 кельвинов не приводила к появлению спектральных сигналов молекул воды или ее предшественников даже после нагревания образцов до характерных для полдня на средних широтах Луны 300 кельвинов. Однако при этом появлялось небольшое количество молекул дейтерия, что говорило о его накоплении в минерале и последующем выделении.
Это навело авторов на идею о необходимости дополнительно высокоэнергетического воздействия для стимулирования образования воды. Ученые выбрали нагрев лазерными импульсами до температур свыше 1000 кельвинов, что заведомо выше возможностей солнечного излучения, но вполне достижимо при попадании микрометеорита. Такое воздействие приводило к появлению заметного сигнала в данных масс-спектрометра, соответствующего как частицам с массой 4 (молекулярные ионы дейтерия), так и 20 (молекулярные ионы тяжелой воды D2O).
Подробное исследование образцов с помощью сканирующего электронного микроскопа выявило обширные оплавленные лазерным излучением области, на ровных поверхностях которых наблюдались ямки размером менее микрона, причем рядом с некоторыми из них находились «крышечки». Авторы интерпретируют образование этих особенностей как разрыв вещества из-за накопления высокого давления газов под поверхностью. Исследователи считают, что создавшим такое давление газом были пары синтезированной воды.
«В целом данная работа продвигает наше понимание происхождения воды уже обнаруженной на Луне и других лишенных атмосферы телах Солнечной системы, таких как Меркурий и астероиды, — заключает соавтор работы Джеффри Джилис-Дэвис (Jeffrey Gillis-Davis). — Также статья впервые демонстрирует научно обоснованный и проверенный механизм образования воды».
Недавно ученые нашли свидетельства, что сразу после формирования Луна была влажной и содержала заметные количества воды, оценили массу выбиваемой метеоритами с поверхности тела в год воды и нашли там «гололед». О запутанной истории обнаружения и опровержения существования воды на Луне читайте в нашем материале «За водой на Луну».
Для этого физики косо сталкивали восемь плазменных струй
Британские и американские физики создали лабораторный аналог аккреционного диска, который возникает в космосе при падении газа на массивные объекты, например, черные дыры. В новом опыте, в отличие от предыдущих исследований, отсутствовали какие-либо стенки или ограничения для потоков — их закручивание происходило за счет нецентрального столкновения восьми плазменных струй. Плазменное кольцо продемонстрировало стабильность, что позволит в будущем исследовать роль магнитного поля в аккреции вещества. Исследование опубликовано в Physical Review Letters. Аккреционные потоки газа вокруг массивных тел встречаются во Вселенной довольно часто. Свет, испускаемый аккреционным диском, может свидетельствовать в том числе и о существовании черной дыры. Поведение газа, падающего на черную дыру, вызывает у исследователей множество вопросов, ответы на которые они добывают преимущественно теоретически. Лабораторные попытки понять физику аккреционного диска тоже существуют. Для этого физики создают потоки водно-глицериновых растворов или металлических расплавов в магнитном поле. Другой способ основан на подаче электрического тока на края холловской плазмы, удерживаемой постоянными магнитами. Недостатком всех этих методов остается наличие жестких границ, которые отсутствуют в космических процессах и искажают моделирование. Группа физиков под руководством Сергея Лебедева (Sergei Lebedev) из Имперского колледжа Лондона вместе с коллегами из США провели эксперимент, лишенный этого недостатка. Он заключался в косом сталкивании восьми плазменных струй, которые закручивались в кольцо. Их движение при этом напоминало движение вещества в аккреционном диске массивного тела. В эксперименте также образовывались характерные плазменные струи, перпендикулярные плоскости вращения. Установка физиков состояла из алюминиевых проволок толщиной 40 микрометров, расположенных в серединах ребер правильного восьмиугольника. Ученые пропускали через них импульсы большого тока (до 1,4 мегаампера на пике), что приводило к нагреву и абляции вещества. Магнитные поля формировали абляционные потоки и направляли их в середину установки, слегка отклоняя от центра. Столкновение потоков вещества формировало его в кольцо диаметром шесть миллиметров. Оно существовало не более 210 наносекунд, за время которого плазма делала от половины до двух оборотов. Физики следили за ее образованием и развитием в оптическом и экстремально-ультрафиолетовом диапазоне, что позволило исследовать распределение скоростей. Изображения показали, что плазменное кольцо стабильно в течение срока жизни, а само вращение происходит в квазикеплеровском режиме. Авторы также наблюдали плазменную струю, порожденную из вращающегося плазменного столба осевыми градиентами теплового и магнитного давления. Скорость вещества в ней составила 100±20 километров в секунду. Малый угол расходимости — 3±1 градус — свидетельствовал об отсутствии эффектов нестабильности. Струю также окружал плазменный ореол. В будущем авторы планируют продлить время жизни кольца за счет более долгих абляционных импульсов, для чего им потребуется использовать более толстые проволоки. Они убеждены, что замена алюминия на другие материалы позволит контролировать различные параметры магнитнодинамического потока. В будущем это позволит в лаборатории приблизиться к условиям, возникающим в астрофизических процессах, и понять роль нестабильности магнитных полей в аккреции вещества. Аккреционный диск — это не единственное явление, связанное с черными дырами, которое физики пытаются воспроизвести в лабораторных экспериментах. Ранее мы рассказывали, как течение воды в сливе раковины помогает изучать квазисвязанные состояния черных дыр, и как в конденсате Бозе — Эйнштейна подтвердили тепловой спектр излучения Хокинга.