Американская компания Squishy Robotics провела испытания своего робота, сбросив его с вертолета, находившегося на высоте 183 метра. Благодаря тому, что в роботе применяется конструкция напряженной целостности, он пережил падение и продолжил передавать изображение с камеры, рассказали разработчики изданию TechCrunch.
В конструкциях с использованием напряженной целостности (тенсегрити) используются два типа элементов, каждый из которых играет свою роль: жесткие стержни и гибкие тросы. Стержни не соприкасаются друг с другом и связаны между собой системой тросов. Если рассматривать такую систему с точки зрения распределения механической нагрузки, то стержни будут постоянно испытывать сжатие той или иной интенсивности, а тросы будут находиться в натяжении. Именно эта особенность дала конструкциям такого типа их свойства, а также название напряженная целостность, произошедшее от английского tensegrity (tensional integrity).
Одно из главных преимуществ тенсегрити-роботов перед роботами других конструкций заключается в их устойчивости к деформации. Благодаря этому их зачастую предлагают использовать для сброса с высоты. Например, NASA прорабатывало проект по сбросу сразу нескольких подобных роботов на спутник Сатурна Титан. Компания Squishy Robotics решила превратить роботов с напряженной целостностью из лабораторного проекта в реально используемое и коммерчески доступное устройство.
Инженеры компании выбрали классическую конструкцию с шестью жесткими трубами, образующими три пары параллельных труб. Между собой они соединены тросами и пружинами, создающими натяжение. Тросы проходят и внутри труб. Робот может двигаться благодаря периодическому натяжению и расслаблению разных тросов, что позволяет менять взаимное расположение труб и обеспечивает «походку» робота. Техника передвижения робота была подобрана алгоритмически, что позволяет оптимизировать ее.
Компания решила продемонстрировать возможности робота очевидным способом — сбросом с вертолета. Во время испытаний специалисты компании воспользовались вертолетом пожарной охраны округа Лос-Анджелес. После достижения высоты в 183 метра (600 футов) специалисты сбросили с вертолета робота с включенной видеокамерой. На ролике можно видеть, что робот сохранил свою конструкцию после падения с такой высоты и продолжил передавать видео:
Squishy Robotics предлагает использовать таких роботов для операций в труднодоступных местах после стихийных бедствий, таких как землетрясений. К примеру, их можно сбрасывать на развалины зданий, собирать данные об обстановке, а затем уже высылать на место спасателей и других специалистов.
В прошлом году инженеры создали другого тенсегрити-робота, который передвигается не за счет натяжения тросов, а благодаря вибрациям от трех моторов. Как и Squishy Robotics, инженеры подобрали оптимальную «походку» робота с помощью методов машинного обучения.
Григорий Копиев
Вероятно, из-за выброса гормона октопамина
Итальянские энтомологи придумали, как сделать выращенных в неволе самцов средиземноморских плодовых мух более успешными любовниками. Эксперименты показали, что если дать мужским особям этих насекомых подраться с роботизированной моделью сородича, то впоследствии они будут больше времени тратить на ухаживания за самками и спаривание с ними. Кроме того, у них вырастет процент успешных попыток спаривания. Как отмечается в статье для журнала Biological Cybernetics, результаты исследования повысят эффективность программ по сокращению численности насекомых, в ходе которых в дикую природу массово выпускают стерилизованных самцов. Среди насекомых много вредителей сельского хозяйства, переносчиков инфекций и инвазивных видов, угрожающих целым экосистемам. Один из наиболее эффективных и безопасных для окружающей среды методов борьбы с ними заключается в том, чтобы в большом количестве выращивать в неволе стерильных самцов определенных видов и выпускать их в природу. После того, как такие особи спарятся с дикими самками, те не дадут потомства. В результате местная популяция вида сократится или вовсе исчезнет. Несмотря на все достоинства этого подхода, у него есть и недостатки. Одна из проблем заключается в том, что выращенные в неволе и стерилизованные самцы приспособлены к жизни в природе хуже своих диких сородичей. Например, они зачастую плохо справляются с поиском и оплодотворением самок. Команда энтомологов под руководством Донато Романо (Donato Romano) из Школы передовых исследований имени Святой Анны в Пизе решила сделать выращенных в неволе самцов насекомых более успешными любовниками. Ученые сосредоточили внимание на средиземноморских плодовых мухах (Ceratitis capitata) — широко распространенных вредителях, личинки которых питаются плодами более 200 видов растений. С этими насекомыми часто борются, выпуская в природу стерилизованных самцов. Романо и его соавторы обратили внимание, что самцы средиземноморских плодовых мух агрессивно ведут себя по отношению друг к другу. Мужские особи этих насекомых занимают на листьях или плодах растений участки, где устраивают брачные демонстрации для привлечения самок. Хозяин участка ревностно защищает его от конкурентов, вступая с ними в ритуализированные поединки, включающие взмахи и удары крыльями, а также покачивания и толчки головой. Авторы предположили, что сражения с соперниками запускают в организме мух-самцов изменения, которые впоследствии позволяют им эффективнее привлекать и оплодотворять самок. Чтобы проверить данную идею, исследователи провели серию экспериментов с выращенными в неволе самцами плодовых мух. Они сажали по одной мужской особи за раз в прозрачный контейнер, на дне которого по окружности лежали пять дисков, вырезанных из листьев цитрусовых деревьев. После этого подопытных мух на двадцать минут оставляли в одиночестве, чтобы они заняли один из дисков в качестве демонстрационной площадки. Затем авторы помещали в центр окружности между дисками роботизированную модель самца, управляемую с помощью магнита, Ее направляли к диску, выбранному настоящим самцом, чтобы сымитировать вторжение соперника. Робомуха находилась у границ занятого участка тридцать секунд, после чего возвращалась в центр окружности на шестьдесят секунд. Данная последовательность действий повторялась в течение пятнадцати минут. Подопытные самцы видели в роботах соперников и демонстрировали агрессивное поведение, защищая от них свои участки. На следующем этапе к самцам плодовых мух, которые сразились с роботом, на час подсаживали половозрелых самок. Исследователи фиксировали, сколько времени у мужских особей займет вибрациями крыльями (это часть брачной демонстрации), как быстро они перейдут к совокуплению и как долго оно продлится. Кроме того, они оценивали, закончится ли попытка спариться успешно или самка отвергнет ухаживания. В качестве контрольной группы выступали самцы, которые не сталкивались ни с живыми, ни с роботизированными соперниками. В обеих группах было по 120 особей. Как и ожидали авторы, встреча с роботом-конкурентом помогла самцам плодовых мух эффективнее привлекать самок. По сравнению с сородичами из контрольной группы они дольше вибрировали крыльями, позже переходили к совокуплению и дольше оплодотворяли самок. В целом такие самцы тратили больше времени на ухаживания и спаривание. А их попытки совокупиться с самками чаще заканчивались успешно. Романо и его коллеги предполагают, что во время драки с соперником (настоящим или роботизированным) в гемолимфу мух-самцов выбрасывается большое количество октопамина — аналога норадреналина у беспозвоночных. Это соединение активирует октопаминергические нейроны и тем самым стимулирует агрессивное и брачное поведение. Авторы надеются, что результаты их исследования сделают проекты по контролю численности вредных насекомых более эффективными. Однако для этого нужно придумать, как тренировать стерилизованных самцов в промышленных масштабах. Ранее мы рассказывали о том, как нидерландские инженеры создали легкого летающего робота, который позволяет изучать механизмы, лежащие в основе полета насекомых. Несмотря на отсутствие хвоста он может управлять движением вокруг вертикальной оси с помощью движений крыльев, создающих крутящие моменты по остальным осям. Эксперименты с роботом позволили подтвердить гипотезу, согласно которой дрозофилы и некоторые другие насекомые используют аналогичный механизм во время резких поворотов.