Американские физики построили модель, с помощью которой можно быстро и точно оценить проводимость раствора с высокой концентрацией ионов. Для этого ученые «усовершенствовали» уравнение Нернста — Эйнштейна, включив в него кластеры ионов как отдельные большие частицы. Работу модели исследователи проверили на идеальном и реалистичном примере, в обоих случаях предсказанное значение проводимости отличалось от точного не более чем на четверть. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на сайте arXiv.org.
Эффективность работы аккумуляторной батареи зависит от того, насколько хорошо ее электролит проводит электрический ток. В частности, именно из-за падения проводимости электролита при низких температурах снижается эффективная емкость и максимальный ток отдачи аккумулятора. Казалось бы, это препятствие можно преодолеть, повышая концентрацию ионов (чем больше переносчиков заряда, тем меньше сопротивление и тем выше проводимость раствора). К сожалению, на практике этот наивный способ не работает: при высокой концентрации ионы взаимодействуют между собой и объединяются в группы по несколько частиц, то есть число переносчиков заряда и проводимость снова начинает снижаться. Следовательно, должна существовать оптимальная концентрация ионов, при которой проводимость электролита максимальна.
Хуже того, в настоящее время физики не могут теоретически объяснить этот эффект, хотя отчетливо наблюдают его на практике. С одной стороны, точный подход Эйнштейна, который учитывает попарные взаимодействия между всеми частицами в рамках теории линейного отклика, имеет слишком большую вычислительную сложность, а потому применить его на практике не удается. С другой стороны, уравнение Нернста — Эйнштейна, которое получается при усреднении корреляционных функций по всем частицам системы, позволяет делать осмысленные предсказания, но не ухватывает взаимодействие между ионами. Поэтому оно работает только для сильно разбавленных растворов с малой концентрацией ионов. В то же время, если бы физики умели оценивать проводимость растворов с произвольной концентрацией ионов, они могли бы быстро просканировать базы известных соединений и выбрать из них электролит с оптимальными параметрами. Пока же ученым приходится искать такое вещество наобум.
Физики Артур Франс-Ланорд (Arthur France-Lanord) и Джефри Гроссман (Jeffrey Grossman) «усовершенствовали» уравнение Нернста — Эйнштейна, адаптировав его для растворов с высокой концентрацией ионов. Для этого ученые предложили усреднять корреляционные функции не по всем частицам, а по всем кластерам, в которые может входить как одна, так и несколько частиц. Все такие кластеры удобно описывать матрицей, на пересечении i-ой и j-ой строк которой стоит число кластеров, содержащих i ионов и j катионов. При этом коэффициент диффузии, который входит в уравнение Нернста — Эйнштейна, также заменяется матрицей, построенной из коэффициентов диффузии кластера соответствующего размера. С одной стороны, вычислительная сложность нового метода гораздо меньше, чем у подхода Эйнштейна. С другой стороны, усреднение точно учитывает взаимодействие частиц в рамках одного кластера, хотя и «теряет» силы, действующие между соседними кластерами. Поэтому ученые назвали новый подход «кластерным подходом Нернста — Эйнштейна».
Чтобы оценить погрешность построенной модели, ученые проверили ее на примере идеального электролита, состоящего из трех типов частиц — растворителей, катионов и анионов. Для простоты физики пренебрегали электрическим притягиванием и отталкиванием частиц, то есть считали, то они взаимодействуют только за счет потенциала Леннард-Джонса. Чтобы воспроизвести реалистичную ситуацию, исследователи взяли систему из 2000 растворителей, 365 катионов и 365 анионов, поместили ее в кубическую коробку со стороной 58 ангстрем, нагрели до температуры 300 кельвинов и проследили за установлением теплового равновесия с помощью метода Монте-Карло. В результате ученые получили 90 независимых конфигураций с разными числами кластеров. Наконец, исследователи рассчитали проводимость полученного раствора для одной из нетривиальных конфигураций.
Как и ожидалось, подход Нернста — Эйнштейна предсказал неверное значение проводимости, завысив его почти в два раза. Точный подход Эйнштейна, напротив, предсказывал правильное значение проводимости, но очень медленно сходился (за 200 тысяч итераций его статистическая погрешность не упала ниже 16 процентов). В то же время, «промежуточная» модель объединяла преимущества обоих подходов: быстро сходилась (статистическая погрешность менее трех процентов) и предсказывала правильное значение проводимости (систематическая погрешность порядка трех процентов).
Затем физики также проверили новую модель на реалистичном примере — растворе соли LiTFSI в полиэтиленгликоле (PEO)9. Чтобы смоделировать ситуацию с сильной связью ионов, ученые рассмотрели систему со 150 молекулами соли и 200 полимерными цепочками. В этом случае ученые уже не пренебрегали электростатическими силами. Так же, как и в идеальном случае, исследователи смоделировали равновесные распределения молекул при температуре 363 кельвина, а потом рассчитали проводимость раствора для наиболее вероятной нетривиальной конфигурации. Важно, что проводимость такой системы уже была экспериментально измерена в позапрошлом году, что позволило физикам сравнить теоретическое предсказание с реальностью.
Так же, как и в идеальном случае, подход Нернста — Эйнштейна существенно завышал проводимость раствора, а точный подход Эйнштейна очень медленно сходился (авторы статьи отмечают, что они не увидели даже признаков сходимости). Тем не менее, «кластерный подход Нернста — Эйнштейна» в этом случае работал замечательно: быстро сходился и предсказывал проводимость, которая отличалась от истинного значения не более чем на четверть. Таким образом, авторы заключают, что предложенный ими метод не только позволяет понять физику растворов с высокой концентрацией ионов, но и получить правдоподобные оценки для их проводимости.
Хотя аккумуляторы уже сейчас представляют собой надежный и удобный источник энергии, ученые постоянно стараются улучить их свойства. Например, в марте прошлого года китайские химики разработали электролит, который позволяет литий-ионному аккумулятору работать при температуре −70 градусов Цельсия. В апреле того же года другая группа исследователей повысила безопасность литий-ионного аккумулятора, добавив в его электролит наностержни из бората магния. Кроме того, параллельно ученые разрабатывают альтернативные конструкции аккумуляторов, например, натрий-ионные или литий-воздушные батареи. Про такие перспективные конструкции можно прочитать в материале «Химия и ток».
Дмитрий Трунин
Для скалярной константы связи удалось уточнить предел почти на порядок
Физики из Великобритании получили наиболее жесткие на сегодняшний день ограничения на параметры ультралегкой темной материи. Для этого они использовали данные атомных часов и новый модельно-независимый подход к изучению вариаций во времени этих параметров и других фундаментальных констант. Работа опубликована в журнале New Journal of Physics. По современным представлениям темной материи во Вселенной примерно в пять раз больше обычного вещества. Она не участвует в электромагнитных взаимодействиях и поэтому недоступна прямому наблюдению. Наиболее вероятные кандидаты на роль темной материи — вимпы — до сих пор экспериментально не обнаружены. Поэтому ученые рассматривают и другие теории о составе темной материи: от сверхлегких частиц, например, аксионов, до первичных черных дыр. Ранее ученые уже использовали данные атомных часов для ограничения параметров ультралегкой темной материи с массой менее 10-16 электронвольт. На этот раз физики Натаниель Шерилл (Nathaniel Sherrill) и Адам О Парсонс (Adam O Parsons) с коллегами из университета Сассекса и Национальной физической лаборатории в Теддингтоне предложили новый модельно-независимый подход к изучению временных вариаций фундаментальных констант при анализе данных атомных часов. При этом количество свободных параметров увеличилось, что по мнению ученых позволит тестировать различные модели и их константы связи. Чтобы проверить новый подход в действии, физики использовали три типа атомных часов: на основе атомов стронция Sr в решетчатой ловушке, на основе ионов иттербия Yb+ в ловушке Пауля и атомные часы на цезиевом фонтане Cs. Частоты всех часов измерялись относительно водородного мазера, после чего рассчитывались отношения частот Yb+/Sr, Yb+/Cs и Sr/Cs. Это позволило исключить возможные ошибки, связанные с нестабильностью работы мазера из-за изменения параметров окружающей среды. Генерируемые частоты во всех часах зависят от соотношений постоянной тонкой структуры и массы электрона. Поэтому из взаимных измерений частот трех часов можно получить колебания со временем этих констант. Особенностью эксперимента стала независимость измерений от предполагаемой функциональной зависимости констант от времени. Поэтому полученные ограничения могут быть использованы при рассмотрении любых гипотетических моделей. В частности, ученые получили ограничения на константы связи гипотетических частиц темной материи в области масс от 10-20 до 10-17 электронвольт. Для скалярной константы связи dγ(1) физикам удалось исключить новую область параметров, усилив предыдущий предел примерно на порядок. Ученые до сих пор не могут определить параметры темной материи, хотя и видят ее проявления в различных процессах. Чтобы лучше разобраться, какие на сегодняшний день существуют модели, описывающие темную материю, пройдите наш тест.