Японские и российские ученые обнаружили биологическую активность в клетках шерстистого мамонта, погибшего около 28 тысяч лет назад, сообщается в Scientific Reports. Исследователи поместили структуры из тканей мамонта, похожие на клеточные ядра, в яйцеклетки мышей и увидели, что они начали делиться, но окончательного деления клеток не произошло. Авторы подчеркивают, что при современном уровне развития технологий говорить о клонировании мамонтов слишком рано, но их метод позволяет оценить биологическую активность в клетках вымерших животных.
Исследование давно исчезнувших видов может помочь палеобиологам узнать об их эволюции и причинах вымирания. Например, анализ генома шерстистых мамонтов (Mammuthus primigenius) позволил восстановить последовательность генов гемоглобина и обнаружить в них мутации, которые помогли животным приспособиться к холодному климату. С помощью протеомного анализа ученые нашли в тканях мамонтов коллаген и белки костной ткани.
В 2009 году японские исследователи под руководством Акиры Иритани (Akira Iritani) из университета Киндай получили ядра клеток из кожи и мышц мамонта, жившего около 15 тысяч лет назад. Их поместили в мышиные ооциты (яйцеклетки), но «оживить» ядерные структуры не удалось: делиться клетки не начали.
В новой работе группа Иритани и их российские коллеги попытались заставить делиться ядра из клеток мамонтенка Юки. Мумию молодой самки мамонта, которую прозвали Юка, нашли в Якутии, на побережье моря Лаптевых, в 2010 году. Она прекрасно сохранилась, до нас дошли мягкие ткани, шерсть и мозг животного. Радиоуглеродным методом авторы датировали останки: мамонт погиб около 28 тысяч лет назад.
Исследователи провели протеомный анализ и обнаружили в мышечных тканях Юки ядерные белки, в том числе гистоны и белки ядерной мембраны. Им удалось выделить 88 похожих на ядра структур, которые поместили в мышиные яйцеклетки. При этом собственные клеточные ядра из ооцитов не убирали, чтобы сравнивать активность «своих» и «чужих» ядерных структур. Чтобы можно было наблюдать за процессом, авторы добавили в клетки маркеры, генетические конструкции с зеленым и красным флуоресцентными белками. В качестве контроля ученые помещали в мышиные яйцеклетки ядра из замороженных тканей мертвого азиатского слона.
Ученые увидели активность ядерных структур из тканей мамонта. В 21 проценте клеток образовалось веретено деления (структура, необходимая для сегрегации хромосом, которая образуется на начальном этапе деления клетки) и структуры, похожие на пронуклеусы, которые формируются в яйцеклетке во время деления. Но деления мышиных ооцитов не произошло, по мнению исследователей, из-за сильных повреждений генома мамонта. В мышечных тканях содержались фрагменты ядерной ДНК длиной до 300 пар нуклеотидов. Очевидно, этого было недостаточно для успешного деления.
Авторы надеются, что в дальнейшем удастся воссоздать и другие клеточные процессы, в частности репликацию ДНК и транскрипцию (синтез) с нее РНК. И хотя при современном уровне развития технологий говорить о клонировании вымерших животных пока слишком рано, ученые считают, что создали подходящий метод для определения биологической активности в ядрах из клеток давно исчезнувших животных.
С современными видами животных дело обстоит лучше. Недавно в Китае клонировали яванских макак по «методу овечки Долли», то есть переносом ядра из соматической клетки в лишенную ядра яйцеклетку. А в начале этого года появилось сообщение о клонировании обезьян с отредактированным геномом.
Екатерина Русакова
Ученые впервые вызвали партеногенез геномным редактированием
Генетики из американских и британских университетов обнаружили, какие гены отвечают за факультативный партеногенез у дрозофил. Они внесли точечные изменения в мушиные гены, влияющие на текучесть мембран (Desat2), образование центриолей (Polo) и скорость пролиферации (Myc). Мухи-самки из созданной генетической линии успешно вступали в половое размножение, но были при этом способны к партеногенезу как минимум на протяжении двух поколений. Исследование опубликовано в журнале Current Biology. Партеногенез — развитие живых организмов из неоплодотворенной яйцеклетки — широко распространен среди животных. На филогенетическом древе чисто партеногенетические виды нередко соседствуют с практикующими «обычное» половое размножение. Иногда и вовсе удается описать спорадические случаи появления партеногенеза у отдельных представителей непартеногенетических видов. Следовательно, генетическая подоплека партеногенеза может возникать быстро по эволюционным меркам и должна быть в этом случае относительно несложной. Но конкретные молекулярные механизмы партеногенеза часто остаются нерасшифрованными. У мух, неспособных к партеногенезу, яйцо приостанавливается на стадии метафазы I мейоза, а дальнейшее развитие (завершение деления, отделение полярных телец и дальнейшие митотические деления) продолжается лишь после оплодотворения. Но встречаются и факультативно партеногенетические линии, в которых партеногенетические потомки составляют от десятых долей до десяти процентов популяции. Доктор Алексис Сперлинг (Alexis L. Sperling) из Кембриджского Университета с коллегами из американских университетов Мемфиса и Калифорнийского технологического исследовала механизм возникновения факультативного партеногенеза у мух вида Drosophila mercatorum. Генетики отобрали и секвенировали геномы и транскриптомы факультативно и облигатно партеногенетических штаммов D. mercatorum и сопоставили их между собой. При партеногенезе была изменена экспрессия 44 генов, связанных в основном с формированием центриолей и регуляцией клеточного цикла. Несмотря на то, что предки D. mercatorum и более изученной D. melanogaster разошлись более 40 миллионов лет назад, данные сравнительной геномики позволяют воссоздавать на более известном модельном объекте изменения, обнаруженные в геноме менее известного. Ученые воссоздали у D. melanogaster выявленные изменения активности генов, прибегая к CRISPR-редактированию генома, дупликациям генов, введению в геном генов антисмысловых РНК или энхансерных последовательностей. Самый высокий уровень партеногенеза был зарегистрирован в группах трансгенных D. melanogaster, у которых была повышена активность генов Polo (регулятор образования центриолей) или Myc (регулятор клеточного цикла), либо понижена активность генов Slmb (убиквитиновая лигаза, способствующая деградации Myc) и Desat2 (фермент, синтезирующий ненасыщенные жирные кислоты и регулирующий текучесть мембран). У каждого третьего облигатно партеногенетического яйца D. mercatorum полярные тельца или женские пронуклеусы вступали в митотические деления, давая начало эмбрионам (такая же картина наблюдалась в каждом восьмом случае факультативно партеногенетических линий). Количество полярных телец, способных спонтанно вступать в митоз (и тем самым формировать эмбрион) повышалось при повышении активности генов Myc и Polo. При этом многие мухи из партеногенетических линий после целлюляризации становятся недиплоидными (чаще всего, триплоидными) из-за нарушения образования веретена деления. Ученые получили 21 тысячу мух-самок D. melanogaster, гомозиготных по мутантным аллелям генов Polo, Myc и Desat2, и содержали их в отсутствии самцов. В общей сложности самки дали 143 взрослых потомка (в среднем 0,7 потомка на 100 мух), а у тех, в свою очередь, появилось два партеногенетических взрослых потомка второго поколения (1,4 процента от численности предыдущего поколения). Таким образом, линия животных, способных к партеногенезу на протяжении нескольких поколений, была впервые получена при помощи геномного редактирования. На основании полученных данных авторы предполагают следующий механизм факультативного партеногенеза. Повышение текучести мембран (цитоплазматической и мембраны эндоплазматического ретикулума) влияет на формирование центра организации микротрубочек и, следовательно, веретена деления. Его образование упрощает вступление в митоз. Такие изменения могли стать эволюционно выгодным приобретением при расселении мух в более холодные регионы (повышение текучести мембран, связанное со снижением активности десатураз, улучшает выживаемость мух при низких температурах). Впрочем, детали возникновения партеногенетических линий мух пока не до конца изучены — судя по диспропорции между небольшими изменениями в геноме и выраженным транскриптомным изменениями, часть изменений у партеногенетических D. mercatorum может носить эпигенетический характер (важность эпигенома для партеногенеза ранее была показана в эксперименте на мышах). О медийной шумихе вокруг возможности партеногенеза у человека и о генетических предпосылках к нему читайте в нашем материале «Половинка себя».