Корейские ученые смогли внести мутации в ДНК зрелых нейронов в мозге мышей с моделью болезни Альцгеймера и смягчить тем самым симптомы заболевания у взрослых животных. Сделать это удалось при помощи нанокомплексов с белком Cas9, «заряженным» против гена, участвующего в развитии болезни, которые вводили мышам в мозг. Статья опубликована в журнале Nature Neuroscience.
Несмотря на то, что причиной развития нейродегенеративных заболеваний далеко не всегда становятся мутации в ДНК, ученые рассматривают направленное управление экспрессией генов в нейронах как перспективное средство облегчения симптомов этих болезней. К примеру, подавление экспрессии генов хантингтина (в другой транскрипции — гентингтин) и атаксина-2 при помощи антисмысловых олигонуклеотидов остановило нейродегенерацию у животных с атаксией и болезнью Хантингтона. А выключение гена в мозге при помощи системы редактирования генома CRISPR-Cas9 избавило животных от некоторых симптомов аутизма.
В новой работе ученые из южнокорейского Университета Донгук выбрали в качестве модели нейродегенеративного заболевания болезнь Альцгеймера и продемонстрировали, что внесение мутации в ДНК зрелых нейронов при помощи системы CRISPR-Cas9 может остановить развитие заболевания.
В основе патогенеза болезни Альцгеймера лежит образование амилоидных бляшек из небольшого белка под названием бета-амилоид. Он образуется из белка-предшественника с участием фермента бета-секретазы. Исследователи предположили, что снижение в мозге экспрессии гена Bace1, кодирующего бета-секретазу, поможет предотвратить накопление бета-амилоида.
Для этого авторы работы попытались выключить Bace1 при помощи CRISPR-Cas9 в гиппокампе модельных животных — трансгенных мышей 5XFAD, несущих в геноме несколько «семейных» мутаций, приводящих к болезни Альцгеймера. Систему редактирования генома в готовом виде доставляли непосредственно в мозг путем инъекции. Чтобы белок Cas9, заряженный направляющей РНК против гена Bace1, мог проникнуть в нейроны, его смешивали с амфифильным пептидом R7L10. Получившиеся нанокомплексы кололи в мозг мышам. Предварительно ученые проверили на клеточных линиях и репортерном гене, что система работает как задумано.
Через четыре недели после инъекции у модельных мышей по сравнению с контрольными, которых ничем не лечили, экспрессия гена Bace1 в гиппокампе снизилась на 70 процентов (в группах было от 9 до 12 мышей). Эффект сопровождался значительным снижением количества бета-амилоида. Кроме того, что у мышей замедлилось образование бляшек в нейронах, они значительно лучше контрольных животных справлялись с задачами в лабиринте и обладали лучшей памятью, то есть терапия помогла им сохранить когнитивные способности.
Авторы работы проверили работу системы на другой мышиной модели болезни Альцгеймера и подтвердили, что подход работает вне зависимости от модели. Однако ученые также констатируют, что формирование бляшек при болезни Альцгеймера у человека не ограничивается одним отделом мозга, поэтому такая терапия была бы полезна скорее для «локализованных» заболеваний, таких как болезнь Паркинсона.
Помимо генотерапии, ученые предлагали лечить болезнь Альцгеймера путем улучшения энергообмена в мозге, при помощи иммунотерапии, и путем инъекций гормона иризина, который вырабатывается во время физических упражнений.
Дарья Спасская
Исследование провели на личинках дрозофил
Японские исследователи в экспериментах с дрозофилами установили механизм влияния на нейропластичность фермента убиквитинлигазы, функции которого нарушены при синдроме Ангельмана. Как выяснилось, этот фермент в пресинаптических окончаниях аксонов отвечает за деградацию рецепторов к костному морфогенетическому белку, за счет чего устраняются ненужные синапсы в процессе развития нервной ткани. Отчет о работе опубликован в журнале Science. Синдром Ангельмана представляет собой нарушение развития, которое проявляется умственной отсталостью, двигательными нарушениями, эпилепсией, отсутствием речи и характерной внешностью. Его причиной служат врожденные дефекты фермента убиквитинлигазы Е3А (Ube3a), который присоединяет к белкам убиквитин, влияющий на их судьбу в клетке, в том числе деградацию. При синдроме Ангельмана сниженная активность Ube3a нарушает синаптическую пластичность в процессе нейроразвития, в частности элиминацию ненужных синапсов. Повышенная активность этого фермента, напротив, приводит к неустойчивости сформировавшихся синапсов и, как следствие, к расстройствам аутического спектра. Исследования постсинаптических функций Ube3a показали, что он играет роль в нейропластичности, в частности формировании дендритных шипиков. При этом, по данным иммунохимических и электронно-микроскопических исследований, в коре мозга мыши и человека этот фермент экспрессируется преимущественно пресинаптически. Учитывая высокую эволюционную консервативность Ube3a, сотрудники Токийского университета под руководством Кадзуо Эмото (Kazuo Emoto) использовали для изучения его пресинаптических функций сенсорные нейроны IV класса по ветвлению дендритов (C4da) личинок плодовой мухи дрозофилы. Число дендритов этих нейронов резко сокращается (происходит их прунинг) в первые 24 часа после образования куколки, а на последних стадиях ее развития дендриты разветвляются вновь уже по взрослому типу. Используя флуоресцентные метки различных биомаркеров нейронов, исследователи показали, что в ходе этого процесса ремоделированию подвергаются не только дендриты, но и пресинаптические окончания аксонов. Попеременно отключая разные компоненты участвующих в этих процессах молекулярных комплексов, ученые убедились, что для элиминации синапсов под действием сигнального пути гормонов линьки экдизонов необходима только Ube3a, но не куллин-1 E3-лигаза, участвующая в прунинге дендритов. Дальнейшие эксперименты с применением флуоресцентных меток и РНК-интерференции показали, что Ube3a активно транспортируется из тела нейрона в аксон двигательным белком кинезином со средней скоростью 483,8 нанометра в секунду. Создав мутантов с дефектами в различных участках Ube3a, авторы работы выяснили, что связанные с синдромом Ангельмана мутации D313V, V216G и I213T в среднем домене фермента, содержащем тандемные полярные остатки (TPRs), препятствуют его связи с кинезином и транспорту из тела нейрона в аксон. Как следствие, нарушается элиминация ненужных синапсов. Изменения в N-концевом цинк-связывающем домене AZUL и C-концевом HECT влияли на эти процессы в значительно меньшей степени. Ube3a принимает участие в убиквитинировании многих клеточных белков. Чтобы выяснить, какой из них опосредует элиминацию синапсов, авторы работы вызывали в нейронах избыточную экспрессию разных белков-мишеней Ube3a с целью насытить этот фермент и таким образом заблокировать его действие. Оказалось, что выраженные дефекты элиминации синапсов возникают при избыточной экспрессии тиквеина (Tkv) — пресинаптического рецептора к костному морфогенетическому белку (ВМР); прунинг дендритов при этом не затрагивается. Исследование нормальной экспрессии Tkv с помощью флуоресцентных меток показало, что ее уровень значительно снижается через восемь часов после начала формирования куколки. У мутантов, лишенных Ube3a, этого не происходило. Выключение гена tkv или другого компонента сигнального пути BMP — mad — восстанавливало элиминацию синапсов у таких мутантов, то есть за нее отвечает именно этот сигнальный путь. Это подтвердили, восстановив элиминацию синапсов у мутантов без Ube3a антагонистом BMP LDN193189, а также экспрессией белков Glued-DN или Dad, которые подавляют сигнальную активность Mad. Искусственное повышение пресинаптической экспрессии Ube3a в нейронах C4da вызывало массированную преждевременную элиминацию сформировавшихся синапсов и общее уменьшение синаптической передачи у личинок третьего возраста. Это происходило из-за чрезмерного подавления сигнального пути BMP. Таким образом, дефекты убиквитинлигазы Ube3a, лежащие в основе синдрома Ангельмана, приводят к избыточной активности сигнального пути BMP, вследствие чего не происходит устранение ненужных синапсов в процессе развития нервной системы. Этот сигнальный путь может послужить мишенью для разработки новых методов лечения этого синдрома, а возможно и расстройств аутического спектра, считают авторы работы. В 2020 году американские исследователи сообщили, что им удалось предотвратить развитие синдрома Ангельмана у мышей с мутацией материнской копии гена UBE3A. Для этого они с помощью системы CRISPR/Cas9 инактивировали длинную некодирующую РНК UBE3A-ATS, которая подавляет экспрессию отцовской копии UBE3A.