Исследователи показали, что сон необходим для исправления повреждений в ДНК нейронов, по крайней мере у данио-рерио. Как сообщается в Nature Communications, во сне у личинок данио-рерио увеличивается динамика хромосом в нейронах головного и спинного мозга, которая влияет на репарацию двухцепочечных разрывов в ДНК.
Сон необходим для жизнедеятельности животных. Длительная депривация сна может привести к их гибели, а его нарушения связывают с ухудшением работы мозга. Правда, недавно биологи опровергли критическую необходимость сна для мушек дрозофил, но даже они должны спать хотя бы несколько минут в день. В то же время, сон, очевидно, связан с высоким риском для жизни животных, так как во время сна они более уязвимы. Необходимость сна объясняют разными причинами. В частности, во время сна ускоряется синтез макромолекул (ДНК, РНК и белков), а также из мозга выводятся нейротоксичные вещества. Однако как в процессе эволюции у животных появился сон, до сих пор непонятно.
Недавние исследования показали, что у некоторых животных сон может быть реакцией на окислительный стресс. Более того, предположительно, у мушек дрозофил и у мышей во время сна ускоряется репарация двухцепочечных разрывов в ДНК. Возникновение таких разрывов может приводить к появлению мутаций, поэтому в клетках существует комплекс белков, устраняющих повреждения ДНК. Причиной появления двухцепочечных разрывов может быть действие ионизирующего излучения, ошибки в работе клеточных ферментов или даже нейронная активность. В том числе они появляются у молодых мышей во время изучения незнакомой обстановки.
Ученые из университета имени Бар-Илана под руководством профессора Лиора Аппельбаума (Lior Appelbaum) предположили, что сон развился в процессе эволюции, чтобы нейроны могли нормально функционировать. Чтобы проверить это предположение исследователи решили проследить за появлением двухцепочечных разрывов и активностью нейронов, а также за динамикой хромосом, которая, влияет, в том числе на репликацию и репарацию ДНК. Хромосомы представляют собой комплексы, состоящие из ДНК и белков, и их структура в течение клеточного цикла меняется. В частности, она становится более или менее плотной и за динамикой этого процесса можно наблюдать.
В качестве модельного организма авторы выбрали личинку данио-рерио. Чтобы наблюдать за единичными нейронами, ученые вывели генетически модифицированных личинок, хромосомы в нейронах которых флуоресцировали при облучении светом определенной длины волны. Ученые наблюдали за динамикой хромосом в нейронах спинного и трех отделов головного мозга: конечного, ромбовидного мозга и поводка эпиталамуса.
Личинки рыбок данио-рерио обычно активны днем и спят ночью. Поэтому сначала авторы измеряли динамику хромосом в нейронах у бодрствующих и спящих животных. Оказалось, что во время сна она увеличивалась примерно вдвое.
Затем исследователи показали, что на динамику хромосом влияет именно сон, а не смена циркадных ритмов. Ученые либо днем кормили личинок мелатонином, гормоном, который облегчает засыпание и участвует в регуляции циркадных ритмов, либо не давали им спать ночью. На следующий день после депривации сна динамика хромосом в нейронах у личинок из экспериментальной группы была вдвое ниже, чем у особей из контрольной группы. После восстановления режима сна динамика хроматина выросла до прежнего уровня. Те личинки, которых кормили мелатонином, по сравнению с особями из контрольной, группы больше спали днем, при этом динамика хромосом у них усиливалась. Затем авторы наблюдали за генетически модифицированными личинками данио-рерио, у которых был отключен синтез мелатонина, но при этом внутренние молекулярные «часы» у них продолжали работать. В результате выяснилось, что у животных с выключенным синтезом мелатонина динамика хромосом во время сна была ниже, чем у обычных личинок. Также исследователи убедились, что динамика хромосом менялась во время сна или бодрствования именно в нейронах. В шванновских клетках (вспомогательных клетках нервной ткани) она не зависела от состояния животного.
За повреждениями ДНК авторы исследования наблюдали с помощью маркера, белка γH2AX, формы белка H2AX, которая образуется в хромосомах в ответ на появление двухцепочечных разрывов в ДНК. С помощью иммуноцитохимического анализа ученые увидели скопления γH2AX в разных отделах мозга личинок и убедились, что количество белка растет днем, во время бодрствования, и падает ночью. При этом количество двухцепочечных разрывов коррелировало с активностью нейронов. В то же время динамика хромосом днем, во время бодрствования личинок оставалась низкой, а ночью возрастала почти в два раза.
В заключение исследователи показали, что динамика хромосом необходима для того, чтобы уменьшить образование двухцепочечных разрывов в ДНК. Они создали генетически модифицированных данио-рерио, у которых вырабатывалось избыточное количество белка, ингибирующего динамику хромосом, и следили за образованием двухцепочечных разрывов и динамикой хромосом во время сна и бодрствования личинок. Оказалось, что у генномодифицированных животных динамика хромосом была одинаковой днем и ночью. При этом количество двухцепочечных разрывов в ДНК ночью у них было на 120 процентов выше, чем у обычных личинок.
«Это как выбоины на дороге», — говорит руководитель исследования Лиор Аппельбаум. «Они накапливаются на дорогах, особенно в дневные часы пик, а ремонтировать их удобно ночью, когда интенсивность движения уменьшается».
Недавно ученые показали, что ритмичные убаюкивания помогают улучшить сон не только людям, но и мышам. Оказалось, что покачивание мышей позволило им быстрее засыпать и реже просыпаться, за счет чего увеличилась продолжительность фазы медленного сна.
И еще четырех видов опухолей
Британские и датские иммунологи обнаружили на цитотоксических T-лимфоцитах рецептор, узнающий одновременно три разных опухолевых антигена. Пациент, у которого были обнаружены эти Т-клетки, смог достичь полной ремиссии меланомы четвертой клинической стадии. Такое строение T-клеточных рецепторов не дает клеткам опухоли ускользнуть от противоопухолевого иммунитета. Похожие типы Т-клеточных рецепторов есть и у здоровых людей, но их роль в противоопухолевом иммунитете пока неясна. Исследование опубликовано в виде статьи в журнале Cell. Клеточная терапия онкологических заболеваний направлена на введение в организм Т-лимфоцитов, узнающих фрагменты белков опухоли, выставляемые клетками на поверхности белков главного комплекса гистосовместимости (HLA-антигенов). Она позволяет добиться ремиссии во многих случаях, при которых другие виды лечения неэффективны. Но врачи часто сталкиваются с ускользанием опухолевого клона от такого иммунитета. Иногда достаточно нескольких месяцев, чтобы опухолевые клетки перестали экспрессировать маркер, который должны были узнавать лимфоциты. Хотя большинство Т-лимфоцитов узнают один эпитоп, некоторая часть из многообразия Т-клеточных рецепторов, образующихся в процессе созревания Т-клеток, узнает не один, а сразу несколько антигенов. Такие клетки есть и у здоровых людей, и у пациентов с аутоиммунными болезнями. Рецепторы, нацеливающие иммунную систему сразу на несколько молекул-мишеней, могли бы повысить эффективность клеточной терапии. Ведь даже если с поверхности опухоли исчезнет один антиген, то иммунный ответ против второго сохранится, и лечение останется эффективным. Шаг в сторону использования этого принципа в терапии сделала группа онкологов и иммунологов из Великобритании и Дании под руководством Эндрю К. Сьюэлла (Andrew K.Sewell) из Университета Кардиффа. На протяжении последних 15 лет они занимаются клеточной терапией меланомы. В рамках клинических исследований врачи забирали у пациентов клетки крови, отбирали среди них Т-лимфоциты, тропные к меланоме, и после культивации in vitro вводили клетки обратно пациентам. В одном из исследований, проведенном в 2011-2014 годах, участвовал пациент с четвертой клинической стадией меланомы, у которого клеточная терапия позволила добиться десятилетней ремиссии болезни (обычно же медианная продолжительность жизни с момента постановки диагноза у таких пациентов не превышает года). Ученые решили детально исследовать, с какими особенностями Т-клеточного ответа это было связано. Как выяснили иммунологи, почти вся противоопухолевая активность лимфоцитов пациента была связана одним лимфоцитарным клоном (его обозначили MEL8), который реагировал in vitro не только на меланому, но и на клетки острого миелолейкоза, опухоли молочной, предстательной и поджелудочной железы от других пациентов с таким же типом HLA-антигена (гаплотип HLA A*02:01, наиболее распространенный в мире). Это было неожиданно, ведь рецепторы этих Т-клеток чувствительны к белку мелану A, специфичному для меланоцитов и происходящих от них опухолей (включая меланому). Авторы создали библиотеку из 936 миллиардов декапептидных последовательностей и оценили in silico сродство рецепторов MEL8 к олигопептидам, связанным с HLA A*02:01. Такой скрининг позволил отобрать 500 пептидов, представленных в протеоме человека. Три из них — участки белков мелана А, BST2 и IMP2 — имели сродство к Т-клеточному рецептору MEL8 in vitro и при этом экспрессировались меланомой. У всех трех декапептидных последовательностей нашлась гомология и на уровне аминокислотной последовательности, и на уровне третичной структуры, что было подтверждено рентгеноструктурным анализом. Т-клетки, у которых есть рецепторы, тропные одновременно к мелану А, IMP2 и BST2, были обнаружены у здоровых добровольцев и у одного пациента с хроническим лимфолейкозом, но их количество было невелико. Обнаруженный вид поливалентного рецептора можно использовать и для лечения других пациентов: исследователи секвенировали последовательность Т-клеточного рецептора и трансдуцировали этой последовательностью другие линии лимфоцитов в рамках своих экспериментов. Следовательно, есть предпосылки для создания эффективной клеточной терапии опухолей или противоопухолевой вакцины. Впрочем, пока невозможно говорить, насколько безопасной было бы такое лечение, ведь исследование британских и датских ученых основано лишь на единичных наблюдениях пациентов с опухолями. Кроме того, распознавание эпитопов Т-клеточным рецептором зависит от варианта HLA.антигена, имеющегося у данного конкретного человека, и распространенность полимодальных Т-клеточных рецепторов у носителей разных вариантов HLA может отличаться. Даже сильного иммунного ответа против клеток меланомы может оказаться недостаточно для победы над болезнью — на эффективность лечения могут влиять такие факторы, как уровень тестостерона.