Ученые из США и Германии синтезировали биополимеры, которые находятся в зубах некоторых видов кальмаров. Материалы из таких белков, полученные с помощью бактерий, обладали высокой прочностью, эластичностью, протонной проводимостью и способностью к восстановлению структуры. Статья опубликована в открытом доступе в Frontiers in Chemistry.
Захватывать и удерживать добычу в воде кальмарам помогают зубы, которые находятся в присосках на щупальцах. Прочность им придает не наличие минеральных солей, как у людей, а особенности строения и конформации макромолекул. Благодаря блокам из различающихся по свойствам мономеров в макромолекуле, на микроуровне происходит разделение фаз (как при смешении воды и масла), однако полностью расслоение не возникает, так как части молекулы связаны друг с другом. Вместо этого образуются периодические надмолекулярные структуры, которые придают уникальные физические свойства материалам из белков зубов кальмара.
Мелик Демирель (Melik Demirel) и Абдон Пена-Франчес (Abdon Pena-Francesch) из Пенсильванского университета предложили метод программируемого дизайна белков с повторяющейся структурой, изучили их свойства и возможность применения функциональных материалов и пленок на их основе. С помощью методов генной инженерии, авторам удалось в промышленных масштабах синтезировать белки с заданными молекулярными массами и последовательностью аминокислот. Экспрессию белка контролировали генно-модифицированные бактерии, поэтому продукт получился монодисперсным и обладал определенной последовательностью аминокислот.
Сегментированная структура молекулы белка (чередование аморфных и кристаллических доменов) позволила образовать стабильную сетку из β-листов, которая придавала материалам высокую прочность. В стеклообразном состоянии аморфные цепи не могли передвигаться друг относительно друга из-за водородных связей. Помимо этого, материал обладал эластичностью, способностью к самозалечиванию и переносу протонов. В зависимости от структуры молекулы, менялись оптические и термические свойства. Программируя ход синтеза таких белков можно получать вещества с нужными для определенных задач свойствами.
В виде пленок и покрытий, такие биополимеры могут использоваться в доставке лекарств, биосенорике, защищать ткани от механических повреждений с восстанавлением своей изначальной структуры. Наноматериалы из этих белков, по словам авторов, эффективны как мягкие биосенсоры. В области композитных материалов из оксида графена применение программируемых биополимеров расширяется до создания высокотехнологичных устройств хранения памяти и сенсоров. И в отличие от синтетических полимеров, биополимеры не загрязняют окружающую среду и могут стать отличной альтернативой пластмассам.
Ученые утверждают, что эти белки также можно применять даже в медицине, в силу их способности поддерживать рост клеток. На сегодняшний день часто для восстановления тканей используют хитозан. Китайским ученым удалось восстановить поврежденный спиной мозг обезьян с помощью биоматериала на основе этого вещества.
Алина Кротова
А девять процентов пережили компостирование, даже не изменившись визуально
Исследование с участием 9701 добровольца показало, что только треть пластика с лейблом «для домашнего компостирования» на самом деле превращается в компост. При этом люди плохо разбираются в видах компостируемого пластика, даже если склонны выбирать товары в такой упаковке. Результаты исследования опубликованы в журнале Frontiers in Sustainability. Биоразлагаемый и компостируемый пластик приобретает все большую популярность. Исследования описывают, что такие материалы полностью исчезают под действием живых организмов в почве или в компосте, не оставляя после себя ни микропластика, ни других вредных остатков.Компостируемый пластик предполагается использовать, например, для мелкой пищевой упаковки (саше, чайных пакетиков), одноразовой посуды и влажных салфеток. Эти предметы обычно сильно загрязнены едой и другой органикой, мыть и перерабатывать их из-за малого размера неудобно, поэтому компостирование представляется хорошим вариантом. Однако, в реальности все сложнее. Новые материалы оказались плохо совместимы с уже существующими установками для промышленного компостирования: для их разложения лучше подходят аэробные условия, когда бактерии размножаются в атмосфере кислорода. А пищевые отходы традиционно перерабатывают в анаэробных условиях — без доступа кислорода. По домашнему компостированию данных и вовсе не было, а между тем, условия в домашних компостерах сильно отличаются не только от промышленных, но и между собой. Марк Медовник, ученый и популяризатор науки, автор книги «Из чего все сделано» и его коллеги из Университетского Колледжа Лондона решили выяснить, как на самом деле справляются с компостированием пластика их сограждане. Сначала ученые попросили добровольцев заполнить анкеты, чтобы оценить их экологические привычки, желание заниматься компостированием пластика, степень информированности и наличие в домохозяйствах нужного оборудования. В этой стадии исследования приняло участие 9701 человек из всех районов Великобритании.Более 4 процентов опрошенных имели компостер дома, и более 72 процентов — на приусадебном участке. Интересно, что более масштабный опрос 2009 года показал, что компостированием занимаются только 34 процента жителей Великобритании. Авторы предположили, что в их исследовании участвовали в основном люди, которых волнуют вопросы экологии. Однако, даже такие озабоченные экологией люди плохо понимали, как правильно компостировать пластик. Почти 85 процентов опрошенных отметили, что обращают внимание на материал упаковки и склонны покупать товары, упакованные в «компостируемый» и «биоразлагаемый» пластик. В то же время более 60 процентов путали термины «для домашнего компостирования», «для промышленного компостирования» и «биоразлагаемый». (Последний термин наименее конкретный из трех, и обещает лишь то, что материал может разложиться под действием живых организмов, но не поясняет — как быстро и в каких условиях). Вторая часть исследования представляла собой параллельный эксперимент по компостированию. Медовник и его коллеги попросили добровольцев выбрать предмет из пластика с лейблом «для домашнего компостирования», поместить его в домашний компостер, а спустя время проверить, насколько он разложился. Продолжительность эксперимента участники выбирали сами, исходя из своих привычек пользования компостером. Чтобы легче идентифицировать предмет, его нужно было положить в авоську из небиоразлагаемого пластика и пометить маркером. Степень деградации предлагалось оценить по пятибалльной шкале: от 0 (никаких видимых изменений) до 4 (предмет полностью исчез). В эксперименте участвовало 1648 человек, но закончили его только 902 человека. Всего Медовник и его коллеги получили данные о компостировании 1307 предметов. Эффективность процесса оказалась невелика — только 34 процента предметов полностью превратились в компост, остальные были различимы глазом, а 9 процентов и вовсе пережили компостирование без существенных изменений. По присланным фотографиям авторы поняли, что некоторые участники все равно положили в компостеры пластик, не предназначенный для домашнего компостирования. Но, даже если исключить такие ошибки, доля полностью переработанного пластика поднимется лишь до 40 процентов. Интересно что продолжительность компостирования влияла на результат лишь незначительно. Даже после пятнадцати месяцев в компостере полностью разложилось менее 40 процентов пластика. В Уэльсе, самой теплой области Великобритании, эффективность оказалась немного выше среднего — полностью разложилось 45 процентов предметов. А вот между остальными регионами заметной разницы не было. Авторы заключили, что домашнее компостирование в нынешнем виде — очень трудно контролируемый и неэффективный процесс. Чтобы оно стало действительно полезным, нужно проделать большую работу — не только по разработке новых материалов и способов компостирования, но и по регулированию и распространению знаний.Медовник и его коллеги просили добровольцев собственноручно проводить эксперименты. Подобные исследования относятся к так называемой гражданской науке (citizen science) и приобретают все большую популярность. Например, летом мы писали о том, как добровольцы по всему миру закапывают в землю чайные пакетики, чтобы помочь ученым следить за изменениями климата. А о российских проектах гражданской науки можно узнать на платформе «Люди Науки».