Немецкие гляциологи провели исследование подледной части ледника Рековери — одного из крупнейших ледяных потоков в Восточной Антарктиде — и не обнаружили там крупных озер. Именно подледные озера считались основной причиной возникновения на материковой части ледяного щита участков быстро движущегося льда. Поэтому теперь ученым придется искать другие механизмы образования ледяных потоков, пишут авторы статьи в Journal of Geophysical Research: Earth Surface.
Основной объем тающего в Антарктиде льда приходится на шельфовые ледники — огромные ледяные образования, которые выступают в море и фактически плавают на поверхности воды, не опираясь на сушу. Недавнее исследование показало, что именно шельфовые ледники Туэйтса и Пайн-Айленд в Западной Антарктиде потеряли больше всего льда за последние 25 лет. Это связано с тем, что они значительно сильнее подвержены влиянию теплых океанских течений, вызванных, в частности, Эль-Ниньо.
При этом непрерывность таяния шельфов обеспечивает подвижный материковый лед — выводные ледники и ледяные потоки. Именно они подпитывают шельфовые ледники новым льдом. Как правило, эти потоки представляют собой движущиеся ледяные полосы шириной до 50 километров и протяженностью в сотни километров. Скорость льда в них может достигать нескольких километров в год, однако обычно не превышает 300–400 метров в год. Несмотря на то, что ледяные потоки достаточно хорошо изучены, что именно приводит лед в движение до сих пор до конца не ясно.
Одной из наиболее вероятных причин образования ледяных потоков в Антарктическом ледяном щите считалось возможное наличие больших подледных озер под движущимися участками ледников. Об их присутствии свидетельствовали, например, данные спутниковых альтиметрических измерений. Ученые предполагали, что вода в озерах может контактировать с нижней частью ледника, и, выполняя роль смазки, приводить к аквапланированию. Чтобы проверить эту гипотезу, немецкие гляциологи под руководством Томаса Кляйнера (Thomas Kleiner) из Института полярных и морских исследований имени Альфреда Вегенера изучили один из антарктических ледяных потоков — ледник Рековери, который переносит лед из Восточно-Антарктического ледяного щита в шельфовый ледник Фильхнера, расположенный уже в Западной Антарктиде. Скорость льда в разных участках потока варьируется от 10 до 400 метров в год.
Чтобы исследовать геометрию ледника Рековери, определить форму его основания и проверить, нет ли под ним больших озер, ученые использовали радиогляциологический радар. Измеряя параметры средних и коротких радиоволн, отраженных от нижней поверхности ледника, ученые таким образом измерили его толщину и геометрию поверхности материковых пород. С помощью компьютерного моделирования, которое позволило оценить поглощение радиоволн при прохождении сквозь толщу льда, ученые определили расположение сухих, влажных и болотистых участков ледника и построили карту водных потоков под ним.
По словам авторов работы, погрешность измерений достаточно высока, поэтому однозначного вывода о топографии поверхности из полученных данных делать не стоит. Однако анализ результатов явным образом свидетельствует об отсутствии под ледником больших озер, которые ученые ожидали там обнаружить. Небольшие озера были обнаружены только в верхнем течении подледных рек, и они не могли привести к скольжению льда с достаточной скоростью. При этом ни в одной из точек ледника Рековери, в которых предполагалось наличие подледных озер (и согласно моделированию, и по спутниковым данным), достаточного количества воды обнаружено не было.
Гляциологи отмечают, что полученные данные опровергают одну из наиболее вероятных гипотез возникновения ледяных потоков, однако не предлагают никакой обоснованной альтернативы. По словам ученых, обнаруженных под ледником небольших озер и гравитационных эффектов для движения льда со скоростью в несколько сотен метров в год недостаточно, и в будущем авторы работы надеются на прояснение механизма возбуждения движения льда с помощью сейсмологических измерений.
Точные причины возникновения в Антарктиде большого количества подледных озер и рек также до сих пор до конца не ясна. Например, в прошлом году американские геофизики выяснили, что к их появлению могут приводить геотермические потоки мантии под материком. Для этого ученые провели численное моделирование и оценили влияние мантийных плюмов на процесс таяния льда в основании антарктических ледников.
Александр Дубов
С их помощью ученые надеются подробнее исследовать подготовку сейсмических событий
Геофизики провели статистический анализ GPS-данных о смещении геодезических станций перед 90 крупными землетрясениями. Выяснилось, что за два часа до сейсмического толчка станции ускоренно перемещались в направлении, которое соответствовало модели предполагаемого медленного скольжения по разлому перед сейсмическим срывом. По мнению ученых, смещения отражают заключительную фазу подготовки землетрясения. Дальнейшие наблюдения на более плотной измерительной сети позволят отслеживать этот процесс на более ранних этапах и повысить эффективность оперативных прогнозов крупных землетрясений. Об исследовании сообщают две статьи (1, 2) в журнале Science. Надежно спрогнозировать землетрясение ― это значит четко указать время, место и магнитуду предстоящего сейсмического события. Наибольшую практическую ценность представляют краткосрочные (на период до нескольких суток) и оперативные (на ближайшие часы) прогнозы, но надежных методик для них в настоящее время не существует. Подробно почитать о трудностях в деле прогноза землетрясений можно в нашем материале «Зона сейсмического риска». Некоторые исследователи полагают, что добиться одновременно точности и достоверности, необходимых в краткосрочном прогнозировании, принципиально невозможно. Причиной тому ― неэффективность осреднений из-за фрактального строения геологической среды и динамический хаос, присущий ее поведению и обусловленный чувствительностью к начальным условиям, параметрам и текущей обстановке. Тем не менее, попытки построения сейсмотектонических моделей, которые позволили бы повысить точность прогнозирования, продолжаются. В них все большую роль ученые отводят фазе перехода от медленного и стабильного асейсмического скольжения по разлому, при котором не происходит разрушения геосреды, к динамическому срыву, вызывающему землетрясение. Тектонический разлом в таких моделях представляется как зона разупрочнения с повышенной ползучестью горных пород, и разрядка их напряженно-деформированного состояния на начальном этапе происходит за счет медленных процессов. Эти так называемые «тихие землетрясения» сопровождаются излучением низкоамплитудных и низкочастотных сейсмических волн и могут быть связаны с повышенной микросейсмичностью. Однако ее практически невозможно отделить от фона и интерпретировать именно как проявление переходной фазы, то есть как серию форшоков ― предвестников землетрясения. Французские геофизики Кантен Блетери (Quentin Bletery) и Жан-Матье Ноке (Jean-Mathieu Nocquet) из Университета Лазурного берега попытались выявить переходную фазу с помощью геодезических GPS-измерений. Для статистического анализа они использовали данные о горизонтальном смещении 3026 геодезических станций в течение двух суток перед крупными сейсмическими событиями. В исследование вошли данные о зарегистрированных в разных регионах Земли 90 землетрясениях магнитудой 7,0 и выше (в том числе Великое восточно-японское землетрясение, или Тохоку, магнитудой 9,0 в марте 2011 года). Рассматривались станции, расположенные в радиусе до 500 километров от эпицентра. Для каждой из них данные об изменении положения образовали временной ряд с пятиминутным шагом. Блетери и Ноке рассчитали величины горизонтальных смещений, которые должны были произойти на каждом шаге из-за медленного асейсмического скольжения. При моделировании исследователи учитывали глубину гипоцентров, магнитуду и геодинамические обстановки в районах землетрясений. Анализ показал, что в сдвигах геодезических станций приблизительно за два часа до землетрясений появилась тенденция к экспоненциальному ускорению. Она проявлялась тем четче, чем ближе располагались станции к эпицентру надвигающегося землетрясения и чем гуще была их сеть. Такая картина сдвигов сложилась за счет данных, относящихся к районам 52 сейсмических событий из 90 (около 58 процентов) и собранных на 2235 станциях (почти 74 процента). Вызвавшее эти сдвиги медленное скольжение должно было создать средний суммарный момент силы 3,9 × 1018 ньютон-метров, что соответствует количеству энергии, выделяющемуся при землетрясении магнитудой 6,3. Исследуя глобальный стек сдвигов, Блетери и Ноке обнаружили, что в течение 48-часового промежутка времени перед землетрясением положение станций слабо колеблется вдоль предполагаемой линии скольжения с периодом около 12,9 часа, что очень близко к периоду лунного полусуточного прилива (12,4 часа). Ученые предположили, что приливное воздействие могло отразиться на режиме скольжения, а при достижении критической стадии ― даже послужить триггером динамического срыва. Блетери и Ноке полагают, что эффект ускоренного сдвига поверхности непосредственно перед землетрясением ― это лишь проявление заключительной фазы медленного скольжения. Выделить его из общего фона на более ранних этапах пока не представляется возможным, так же как и отследить подготовку отдельного землетрясения: четкая картина ее видна лишь при суммировании результатов. Однако, как отмечает автор второй статьи Роланд Бюргманн (Roland Bürgmann) из Калифорнийского университета в Беркли, расширение геодезических наблюдений и уплотнение сети станций должно существенно дополнить данные сейсмического мониторинга. Ученые смогут подробнее изучить роль медленного скольжения в подготовке крупных землетрясений и повысить надежность краткосрочного и оперативного прогнозирования. Ранее N + 1 сообщал о том, как ученые измерили колебания скорости сейсмических волн, связанные с приливными деформациями и выделили в катастрофическом землетрясении IV века на Крите два события. А еще мы рассказывали, как геофизики приспособили моделирование для прогноза техногенных землетрясений.