Ученые впервые смогли заставить управляемых магнитным полем нанороботов проскальзывать сквозь плотное вещество стекловидного тела глаза, что в перспективе может помочь в лечении множества глазных заболеваний — от диабетической ретинопатии до глаукомы, говорится в статье, опубликованной в Science Advances. До сих пор подобные нанороботы могли перемещаться только в биологических жидкостях или модельных системах, но не в реальных тканях.
Врачи-офтальмологи часто сталкиваются с необходимостью вводить лекарства в стекловидное тело — прозрачную белковую субстанцию, которая заполняет глаз. Традиционные методы точечного введения лекарств позволяют относительно легко добраться до передней части глаза, однако рассчитывать на пассивное «просачивание» молекул действующего вещества сквозь стекловидное тело в заднюю часть глаза не приходится, его вещество слишком плотное. Вводить лекарства для глаза в кровь тоже не имеет смысла, поскольку их не пропустит гемато-ретинальный барьер.
Исследователи из Германии, Дании и Китая под руководством Пира Фишера (Peer Fischer) из Института интеллектуальных систем Общества Макса Планка попытались решить эту проблему с помощью магнитных нароботов — наночастиц, чьим движением можно управлять с помощью внешнего магнитного поля.
Они создали спиралевидные структуры из диоксида кремния и никеля c «головой» диаметром 500 нанометров и длиной 2 микрона — это примерно соответствует размеру ячеек сетки гиалуроновых макромолекул (500 нанометров), из которых и состоит стекловидное тело.
Но главным секретом нанороботов стало специальное скользящее покрытие на основе перфторуглеродов, которое ученые «подсмотрели» у плотоядных растений рода Nepenthes. Ловчие «кувшины» этих хищных растений покрыты очень скользким слоем вещества, которое не дает жертве выбраться из ловушки. От других естественных покрытий, например, тех, что покрывают листья лотосов, перфторуглеродное отличается еще и устойчивостью к давлению и механическим повреждениям.
В ходе эксперимента ученые набирали в шприц воду, содержащую нанороботов, а затем вводили ее в свиной глаз. Затем, под действием магнитного поля индукцией примерно 8 миллитесла, нанороботы начинали двигаться в стекловидном теле со скоростью примерно 10 микрон в секунду. В результате нанороботы смогли успешно преодолеть расстояние около 1 сантиметра и добраться до сетчатки глаза, причем их движением можно было достаточно легко управлять.
Ранее мы писали, как нанороботы, созданные на основе технологии ДНК-оригами, доставляют лекарства к опухолевым клеткам, и как нанороботы научились сортировать молекулы.
Сергей Кузнецов
Поправка: в четвертом абзаце уточнены размеры нанороботов — правильно 500 нанометров и 2 микрона (не 120 и 400 нанометров — такие частицы использовались в предыдущем эксперименте). Приносим извинения читателям.
Термопокрывало охладит электромобиль днем и согреет ночью
Китайские инженеры создали терморегулирующий материал и термопокрывало на его основе, которое защищает электромобиль от жары и холода без дополнительных затрат энергии. Термопокрывало состоит из двух частей, одна из которых представляет собой ткань на основе диоксида кремния и нитрида бора, а вторая на основе фольги из алюминиевого сплава. Использование материала в качестве автомобильного чехла позволило в жаркую погоду сохранять температуру в салоне почти на 28 градусов ниже, чем в салоне автомобиля без чехла, а ночью поддерживать температуру батарейного блока электромобиля почти на 7 градусов выше температуры снаружи. Статья опубликована в журнале Device. Поддержание определенной температуры необходимо не только для комфортного самочувствия человека, но и для нормальной работы многих технических устройств. Например, в холодную погоду литий-ионные аккумуляторы теряют емкость, а летом в жару перегреваются, что может привести к сокращению их срока службы или даже возгоранию. Чтобы удерживать температуру в нужном диапазоне, требуется дополнительная энергия на нагрев или охлаждение, и на это может уходить довольно много энергии, особенно если речь идет о больших аккумуляторных батареях — как, например, в электромобилях. Однако существует способ регулировать температуру объекта пассивным образом, не затрачивая для этого дополнительную энергию. По такому пути пошли инженеры под руководством Кэ Хан Цуя (Kehang Cui) из Шанхайского университета транспорта. Они разработали материал, который за счет своих излучательных свойств позволяет регулировать радиационный нагрев и охлаждение, и изготовили из него термопокрывало, которое назвали «термальный плащ Януса». Название в честь двуликого бога из римской мифологии отражает двухстороннее строение материала. Внешняя его сторона играет роль солнцезащитного инфракрасного радиатора, а внутренняя — роль широкополосного инфракрасного отражателя. Внешняя часть материала изготовлена из тонких волокон на основе диоксида кремния, которые покрыты наночастицами нитрида бора с гексагональной кристаллической решеткой. Волокна материала переплетаются вместе и образуют ткань. С обратной стороны к ней прикрепляется внутренний слой, изготовленный из алюминиевого сплава. Внешняя и внутренняя стороны материала обладают различными оптическими свойствами: сторона с тканью имеет высокий коэффициент отражения солнечного света до 96 процентов, а также высокую излучательную способность до 97 процентов в инфракрасном диапазоне, совпадающем с атмосферным инфракрасным окном с длинами волн от 7 до 14 микрометров, в то время как фольга из алюминиевого сплава, расположенная с обратной стороны, обладает высокой отражательной способностью со значением около 93 процентов и не имеет потерь во всем инфракрасном диапазоне (5-16,7 мкм). Это позволяет плащу отражать большую часть падающего солнечного излучения и при этом остывать за счет излучения фотонов в инфракрасном диапазоне. В то же время с внутренней стороны происходит рециркуляция фотонов, излученных объектом — они отражаются от материала. Для оценки эффективности термального плаща исследователи провели испытания с использованием двух электрокаров, припаркованных на открытом воздухе в типичных погодных условиях в Шанхае. Один из автомобилей был укрыт термочехлом. В то время как температура салона незакрытого автомобиля достигала 51 градуса Цельсия в полдень, температура салона автомобиля, укрытого чехлом, была на 27,7 градуса ниже. И на 7,8 градуса ниже значения температуры на улице. Температура батарейного блока автомобиля без чехла соответствовала температуре окружающей среды, в то время как температура батареи электромобиля, укрытого материалом, была на 8 градусов ниже дневной температуры. В зимнюю ночь, когда уличная температура опускалась ниже нулевой отметки, термочехол помогал удерживать температуру батарейного блока на 6,8 градуса Цельсия выше, чем снаружи. Инженеры отмечают, что материал термопокрывала разработан таким, чтобы его можно было масштабировать в производстве. Для этого им пришлось пойти на некоторые компромиссы. Например, использование более тонких волокон кремния повысило бы солнечную отражательную способность, но они были бы менее прочными и не могли бы быть изготовлены с использованием промышленных технологий, уже существующих на рынке. Кроме того, используемые материалы, включая алюминий, кремний и нитрид бора, являются недорогими, что делает плащ легким, прочным и огнестойким. Он может использоваться не только для изготовления автомобильных чехлов, но и, например, в качестве материала для покрытия зданий и даже космических аппаратов. Ткани на основе материалов с разными излучательными свойствами могут использоваться и для создания одежды. Например, недавно мы рассказывали о бельгийских физиках, которые спроектировали ткань, одежда из которой может быть теплой или очень легкой в зависимости от того, какой стороной она надета. Это достигается за счет разницы между излучательными свойствами двух сторон ткани.