Материаловеды из НИТУ «МИСиС» под руководством профессора Ларисы Паниной показали, что микропровода на основе магнитных аморфных металлов могут быть использованы для встраиваемых температурных сенсоров. Импеданс (комплексное сопротивление) таких материалов очень чувствителен к колебаниям температуры, причем его поведение на разных частотах может значительно отличаться. Исследование опубликовано в Journal of Magnetism and Magnetic Materials.
Аморфные металлы — сплавы, получаемые путем очень быстрого охлаждения расплавов металлов. Большая скорость охлаждения не позволяет атомам металла образовывать кристаллические зерна и упорядочиваться, из-за чего подобные материалы сильно отличаются по своим свойствам от обычных сплавов. К примеру, из-за отсутствия выраженной кристаллической структуры, в аморфных сплавах очень мала магнитокристаллическая анизотропия — эффект, который делает некоторые направления намагниченности более предпочтительными. Благодаря этому аморфные металлы — магнитомягкие материалы, легко меняющие направление намагниченности.
Один из материалов, созданных на базе аморфных металлов — металлические провода в стеклянной оболочке. Особенности магнитных свойств в таких микропроводах делают их очень чувствительными к магнитным полям. К примеру, в них возникает эффект гигантского магнитного импеданса — изменение комплексного сопротивления материала высокочастотным токам в присутствии внешних магнитных полей.
Помимо чувствительности к внешним магнитным полям, как показало новое исследование, аморфные микропровода также обладают значительным откликом на изменение температуры. В особенности это касается изменений температур вблизи температуры Кюри сплавов — это такая температура, при которой материал полностью теряет возможность сохранять намагниченность. Оказалось, что небольшие колебания температуры сильно сказываются на величине гигантского магнитного импеданса. Причем, если измерять его при низких частотах тока (до 10 мегагерц), то импеданс начинает расти с приближением к температуре Кюри, а на высоких частотах (300 мегагерц) — наоборот, падать.
Этот эффект был предсказан коллективом сначала теоретически, а затем проверен на практике — для микропровода из аморфного сплава кобальта, железа, никеля, бора и кремния. Измерения импеданса позволяют довольно точно определять температуру в диапазоне от 20 до 100 градусов Цельсия.
Физики предлагают использовать микропровода для встраивания в различные промышленные объекты в качестве датчика температуры. Это поможет диагностировать состояние конструкций и предупреждать аварии.
Владимир Королев
При каждом нажатии он меняет структуру, не забывая о предыдущих изменениях
Физики создали механический метаматериал с эффектом памяти, который можно использовать как примитивный счетчик до десяти. Этот материал представляет собой массив из десяти деформируемых ячеек, каждая из которых может находиться в одном из двух состояний, меняющихся при нажатии. При этом предыдущих изменений материал не забывает. В будущем счетчики с подобной конструкцией могут оказаться полезными для мягкой робототехники и умных сенсоров, пишут ученые в Physical Review Letters. Свойства метаматериалов определяются в первую очередь не химическим строением, а геометрической микроструктурой (например, расположением слоев различных веществ или периодичностью атомной решетки) и для них характерны аномальные значения различных физических параметров. Например, если растягивать в продольном направлении ауксетики, обладающие отрицательным значения коэффициента Пуассона, то в перпендикулярном направлении они расширяются (в то время как обычные материалы сжимаются). Ученые работают и над метаматериалами, обладающими памятью: они запоминают воздействие и реагируют на него сменой физических свойств. Например, если нагреть полимер с памятью формы, он вернет исходную (до деформации) форму. Однако такие материалы запоминают лишь начальное состояние, запомнить несколько последовательно меняющихся состояний им не под силу. Физики Мартин ван Хеке (Martin van Hecke) и Леннард Квакернак (Lennard Kwakernaak) из Лейденского университета разработали метаматериал, у которого память о предыдущих деформациях не сбрасывается. Храня информацию о предыдущих воздействиях, такой материал фактически способен считать: он запоминает каждое нажатие, последовательно меняя свою структуру. Ученые сделали материал на 3D-принтере из стоматологической силиконовой смеси для слепков. Он состоит из отдельных ячеек, каждая из которых включает в себя две балки: одну тонкую и одну толстую. Тонкая балка может изгибаться либо влево, либо вправо. Толстая балка служит перегородкой, отделяя ячейки материала друг от друга. Значение критической деформации для толстой и тонкой балок различны, поэтому одного нажатия достаточно для сгибания тонкой балки и частичной деформации толстой. Наличие толстой балки также не дает деформироваться тонкой балке в соседней ячейке. Материал считает следующим образом. В начальном состоянии {000...0} все тонкие балки изогнуты влево. При каждом изменении направления изгиба тонкой балки 0 меняется на 1. Превышая первым нажатием критическую деформацию тонкой балки, систему выводят в состояние {100...0}. После каждого следующего нажатия крайняя слева балка изгибается в правую сторону. Толстая балка при этом не деформируется, но за счет конструкции сгибает следующую тонкую. То есть система копирует состояние изогнутой вправо тонкой балки (1) с каждым нажатием на одну ячейку правее. В терминах нулей и единиц, подсчет можно записать как {000...0} → {100...0} → {110...0}→··· → {111...1}. До скольки может досчитать материал, зависит от числа ячеек и начального состояния системы, память метаматериала сохраняется до конца подсчета. По словам авторов работы, такой метаматериал с эффектом памяти фактически представляет собой простейший компьютер, который можно запрограммировать на счет с любого начального числа. Его работу ученые проверили, фиксируя значения критических деформаций и начиная счет с различных начальных чисел. Материаловеды отмечают, что такой счетчик из метаматериала можно изготовить и из других веществ, например каучука или полиуретана. В будущем из аналогичных ячеек ученые планируют собирать и двумерные массивы, на которых можно будет проводить более сложные вычислительные операции Метаматериалы хороши не только в счете: они помогают решать уравнения со скоростью света, а еще их можно превратить в непрерывные кристаллы времени.