Инженеры из Израиля и Швейцарии создали автономного робота, который ориентируется в пространстве, используя для этого только ультразвуковой излучатель и микрофоны. При этом робот не имеет предварительных данных об окружающей среде и составляет ее карту самостоятельно с помощью тех же приборов. Посвященная разработке статья опубликована в журнале PLOS Computational Biology.
Большая часть роботов, способных к автономному передвижению, опираются на данные с камер. Кроме того, многие из них могут работать в уже известном им месте, для которого создана высокоточная 3D-карта. Этот подход относительно прост и надежен, но работает только в хороших условиях. Плохое освещение или изменения на местности, не отраженные на карте, резко снижают эффективность системы позиционирования. Чтобы решить эту проблему в роботах и беспилотных автомобилях применяются дорогие лидары и радары, а для передвижения по незнакомой местности некоторые разработчики используют метод одновременной локализации и построения карты (SLAM).
Группа инженеров под руководством Йосси Йовела (Yossi Yovel) из Тель-Авивского университета применила в своем роботе Robat такой же метод ориентирования, но более необычный и доступный источник данных — ультразвуковой излучатель и микрофоны. Они расположены на поворотной мачте, установленной на четырехколесной платформе.
Поскольку инженеры вдохновлялись эхолокацией летучих мышей, они запрограммировали робота таким образом, что он сканирует пространство с помощью ультразвуковых импульсов каждые полметра, что имитирует полет летучей мыши со скоростью пять метров в секунду, испускающей импульсы каждые 0,1 секунды. Ультразвуковой динамик излучает относительно узко направленные импульсы, поэтому роботу проходится во время каждой остановки делать три измерения, поворачивая мачту на 60 градусов в обе стороны.
Через каждые пять «шагов» (2,5 метра) робот наносит обнаруженные с помощью ультразвуковых импульсов препятствия на карту, причем не в исходном виде, а с искусственными границами, «раздутыми» вокруг центра препятствия.
Эксперименты показали, что средняя ошибка нанесения препятствий на карту относительно их реального местоположения составляет 42 сантиметра. Кроме того, инженеры создали для робота нейросетевой алгоритм, позволяющий ему не только определять наличие препятствия, но и классифицировать его. Пока разработчики научили алгоритм бинарной классификации препятствий на растения и остальные объекты. Кроме того, что алгоритм «знает» мало типов предметов, пока невысока и его точность классификации — она составляет около 68 процентов.
Недавно американский инженер создал очки, позволяющие оценивать расстояния до объектов по звуку. В них используется лазерный дальномер, показания с которого преобразуются в звук, передаваемый прямо в ушную раковину с помощью наушников, использующих костную проводимость.
Григорий Копиев
И покрутила стопой
Инженеры из Кореи разработали робоногу HyperLeg для человекоподобных роботов, которая имитирует анатомию и возможности человеческой конечности. Нога массой 8,1 килограмм имеет подвижный голеностопный сустав с двумя степенями свободы и подвижную стопу с отклоняемым мыском. Видео доступно на YouTube-канале лаборатории. В последние годы активно развивается направление разработки человекоподобных ходячих роботов. Благодаря наличию ног они в теории могут эффективно передвигаться по разнообразным типам поверхностей и преодолевать препятствия, недоступные для роботов на колесах. За прошедшее несколько лет инженеры научили роботов держать баланс и достаточно уверенно передвигаться. Например, известный человекоподобный робот Atlas, разработанный компанией Boston Dynamics, способен не только уверенно ходить, но также бегать, танцевать и даже демонстрировал некоторые элементы паркура. Тем не менее многие разрабатываемые компаниями человекоподобные роботы до сих пор уступают людям в ловкости, скорости и навыках эффективного передвижения на ногах. Не исключено, что это связано со строением робоног прототипов, которое отличается от анатомии человеческих конечностей, имеющих подвижный голеностопный сустав с несколькими степенями свободы и сгибающуюся ступню. Приблизить ноги роботов к человеческим возможностям решили инженеры из лаборатории робототехники IRIM lab Корейского института технологий и образования. Совместно с компанией WIRobotics они разработали прототип человекоподобной ноги Hyperleg, имитирующей внешний вид, анатомию и возможности нижней человеческой конечности. Робонога состоит из бедра, голени и подвижной ступни. Суммарная масса робоконечности составляет 8,1 килограмм, а высота 786 миллиметров. Все актуаторы располагаются в бедре, масса которого достигает 3,94 килограмм. Главная отличительная черта от предыдущих разработок заключается в конструкции голеностопного сустава, который имеет две степени свободы. Как и у человеческой конечности, помимо подвижного соединения, которое позволяет поднимать носок ступни к голени и отклонять его вниз, голеностопный сустав HyperLeg может вращать ступню в поперечном направлении на 30 градусов в обе стороны. Кроме этого, ступня Hyperleg имеет округлую пятку и сгибаемый мысок аналогично ступне человека. Таким образом, при движении нога может опираться как на переднюю, так и на заднюю часть стопы, аналогично тому как это происходит у человека при ходьбе. В представленном видео продемонстрированы возможные движения роботизированной конечности, а также ее испытания на прыжок в длину с дополнительным грузом 8 килограмм, закрепленным на верхней части бедра. Преодолеваемая 16-килограммовой ногой дистанция в прыжке составляет около 900 миллиметров. https://www.youtube.com/watch?v=wLFCMwRvhVI Другой человекоподобный робот, Digit, разрабатываемый компанией Aerial Robotics для работы на складах, тоже имеет примечательную конструкцию ног, отличающуюся от ног роботов Atlas и недавно представленных роботов Optimus, компании Tesla. Его колено выгнуто в противоположную от привычного направления сторону. Такая конструкция коленного сустава призвана помочь роботу в подъеме груза.