Физики предложили новый метод получения упорядоченных тонких пленок из блок-сополимеров. Оказалось, что вместо технологически сложных методов, основанных на использовании многостадийной температурной обработки, электрического или магнитного полей, достаточно осаждать пленку на сильно искривленную подложку. Вытянутые цилиндрические ячейки пленки будут в такой системе ориентироваться вдоль линий с максимальной кривизной, что позволяет уменьшить количество дефектов и повысить степень упорядоченности системы. В дальнейшем такие пленки можно будет использовать в качестве шаблонов для создания наносистем с периодической структурой, пишут ученые в Physical Review Letters.
Блок-сополимеры состоят из мономеров разного химического состава, которые расположены в цепочке не случайным образом и не чередуются, а формируют структуру блоков: если двигаться вдоль цепочки, то сначала идет участок с мономерами одного типа, а затем он сменяется участком с мономерами другого типа. И уже эти блоки, а не отдельные мономеры, могут в молекуле полимера либо чередоваться по какой-то схеме, либо располагаться случайным образом. При этом, поскольку расположение участков разного состава в молекуле блок-сополимера известно заранее, то из них можно получать неоднородные по составу материалы с упорядоченной периодической структурой и контролируемыми физическими свойствами.
Например, недавно из полимеров такого типа физикам удалось получить упругий материал, который упрочняется при растяжении: блоки одного типа отвечали за эластичность материала, а блоки второго типа — за структуру полимерной сети. Из аналогичных полимеров с блочной структурой ученые предлагают делать тонкие пленки с периодической структурой, которые можно использовать в качестве шаблонов для получения различных наноустройств. Однако большинство попыток получить блок-сополимерные пленки с сильно упорядоченной структурой оказываются неудачными: если ближнему порядку в периодических полимерных пленках ничего не мешает, то сохранить периодичность на расстояниях хотя бы в несколько микрометров оказывается сложнее. Этому мешают складки пленок, дефекты структуры и межзеренные границы.
Обычно для борьбы с этими проблемами приходится использовать довольно сложные многостадийные методы, связанные с использованием внешних полей или температурной обработки. Более простое решение для подобных задач предложили физики из Германии, Аргентины и США под руководством Фредерике Шмид (Friederike Schmid) из Майнцского университета имени Иоганна Гутенберга. Оказалось, что за счет изменения кривизны подобных полимерных пленок можно также и избавляться от дефектов в них.
Чтобы показать, что такой подход работает и структура пленок действительно зависит от ее кривизны, ученые исследовали монослой из блок-сополимера, нанесенный на подложку цилиндрической формы. Использованный диблок-сополимер состоял из участков полистирола и участков, в которых чередовались этилен и пропилен. Ученые варьировали кривизну цилиндрической поверхности такой пленки толщиной 30 нанометров и с помощью атомно-силовой микроскопии следили за тем, как внутри нее при этом меняется ориентация цилиндрических ячеек.
Оказалось, что если эту пленку достаточно сильно изогнуть, то анизотропные цилиндрические ячейки в ее структуре ориентируются вдоль линий с максимальной кривизной (то есть поперек оси подложки). Эти результаты удалось подтвердить с помощью компьютерного моделирования и численных теоретических оценок.
Оказалось, что при достаточно большой кривизне такой эффект характерен как для полимерных пленок, закрепленных в виде монослоя на твердой подложке, так и для свободных мембран, не закрепленных на поверхности, в которых искривления структуры носят случайный характер. Для пленок с бóльшим радиусом кривизны поведение полимерных пленок на подложке и в свободном состоянии отличается. В первом случае цилиндрические ячейки поворачиваются уже вдоль линии оси с минимальной кривизной, а во втором случае такого поворота не наблюдается: структура становится разупорядоченной.
Сейчас с помощью предложенного ими способа удается сориентировать одинаковым образом 90 процентов структуры пленки. По словам физиков, дальнейшего повышения степени упорядочивания можно будет добиться за счет управления взаимодействием между подложкой и полимерной пленкой.
Упорядоченные пленки из блок-сополимеров уже сейчас используют для создания нанотекстурированных поверхностей. Например, недавно американские химики с помощью такого подхода нанесли на поверхность стекол для солнечных батарей и электронных устройств нанотекстуру, которая значительно повышает их прозрачность.
Александр Дубов
Для скалярной константы связи удалось уточнить предел почти на порядок
Физики из Великобритании получили наиболее жесткие на сегодняшний день ограничения на параметры ультралегкой темной материи. Для этого они использовали данные атомных часов и новый модельно-независимый подход к изучению вариаций во времени этих параметров и других фундаментальных констант. Работа опубликована в журнале New Journal of Physics. По современным представлениям темной материи во Вселенной примерно в пять раз больше обычного вещества. Она не участвует в электромагнитных взаимодействиях и поэтому недоступна прямому наблюдению. Наиболее вероятные кандидаты на роль темной материи — вимпы — до сих пор экспериментально не обнаружены. Поэтому ученые рассматривают и другие теории о составе темной материи: от сверхлегких частиц, например, аксионов, до первичных черных дыр. Ранее ученые уже использовали данные атомных часов для ограничения параметров ультралегкой темной материи с массой менее 10-16 электронвольт. На этот раз физики Натаниель Шерилл (Nathaniel Sherrill) и Адам О Парсонс (Adam O Parsons) с коллегами из университета Сассекса и Национальной физической лаборатории в Теддингтоне предложили новый модельно-независимый подход к изучению временных вариаций фундаментальных констант при анализе данных атомных часов. При этом количество свободных параметров увеличилось, что по мнению ученых позволит тестировать различные модели и их константы связи. Чтобы проверить новый подход в действии, физики использовали три типа атомных часов: на основе атомов стронция Sr в решетчатой ловушке, на основе ионов иттербия Yb+ в ловушке Пауля и атомные часы на цезиевом фонтане Cs. Частоты всех часов измерялись относительно водородного мазера, после чего рассчитывались отношения частот Yb+/Sr, Yb+/Cs и Sr/Cs. Это позволило исключить возможные ошибки, связанные с нестабильностью работы мазера из-за изменения параметров окружающей среды. Генерируемые частоты во всех часах зависят от соотношений постоянной тонкой структуры и массы электрона. Поэтому из взаимных измерений частот трех часов можно получить колебания со временем этих констант. Особенностью эксперимента стала независимость измерений от предполагаемой функциональной зависимости констант от времени. Поэтому полученные ограничения могут быть использованы при рассмотрении любых гипотетических моделей. В частности, ученые получили ограничения на константы связи гипотетических частиц темной материи в области масс от 10-20 до 10-17 электронвольт. Для скалярной константы связи dγ(1) физикам удалось исключить новую область параметров, усилив предыдущий предел примерно на порядок. Ученые до сих пор не могут определить параметры темной материи, хотя и видят ее проявления в различных процессах. Чтобы лучше разобраться, какие на сегодняшний день существуют модели, описывающие темную материю, пройдите наш тест.