Биофизики разработали новый способ визуализации обмена веществ в клетках тканей животных, основанный на использовании молекул тяжелой воды. С его помощью можно следить за синтезом и метаболизмом белков, жиров и ДНК. Этот подход можно использовать для изучения биосинтеза полимеров в процессе развития организмов различных животных, поддержания его жизнедеятельности или при развитии раковых опухолей, пишут ученые в Nature Communications.
Обычно чтобы проследить за тем, что происходит какие реакции протекают между различными веществами внутри клеток в процессе их жизнедеятельности, ученые применяют магнитно-резонансные методы, позитронную томографию, флуоресцентную микроскопию или микроавторадиографию. Тем не менее, эти методы либо не обладают достаточным пространственным разрешением, либо предполагают использование цитотоксичных изотопных или флуоресцентных меток, которые могут не только быть опасными для жизни отдельных клеток и тканей, но и приводить к изменениям непосредственно в изучаемых процессах.
Биофизики под руководством Вэя Миня (Wei Min) из Колумбийского университета предложили для исследования метаболических процессов в живых клетках различных животных в качестве контрастного агента использовать тяжелую воду. Введение в ткань тяжелой воды приводит к тому, что часть связей углерод-водород в тех соединениях, которые синтезируются в клетке (в частности, белков, жиров и нуклеиновых кислот), заменяется на связь углерод-дейтерий, за концентрацией которых можно следить по изменению частоты колебаний химических связей с помощью спектрометрических методов. В рамках данного исследования ученые предложили проводить анализ с помощью методики вынужденного рамановского рассеяния. Этот метод уже использовался для визуализации молекул ДНК и белков в раковых клетках, однако до этого исследовать таким образом удавалось лишь распределение веществ на относительно коротких промежутках времени и только в отдельных типах клеток.
С использованием тяжелой воды исследователи получили возможность изучать с более высокой точностью и метаболические процессы вне зависимости от типа ткани. Последовательность перехода дейтерия из тяжелой воды сначала в отдельные амино- или жирные кислоты, а затем — в молекулы белков, жиров или нуклеиновых кислот позволяет получить информацию о скорости синтеза тех или иных веществ и их движении в пространстве.
Ученые отмечают, что для введения тяжелой воды в организм небольшого животного (например мыши) достаточно использовать богатую дейтерием воду в качестве питьевой. Ежедневное потребление 60–70 миллилитров тяжелой воды приводит в результате к замене примерно 2–5 процентов воды в организме на дейтериевую, чего оказывается достаточно для повышения чувствительности метода и при этом никак не отражается на здоровье животных (по данным исследований, даже если пятую часть воды в организме животного заменить на тяжелую, никаких симптомов это не вызовет).
Авторы работы отмечают, что с помощью предложенного метода можно одновременно следить за метаболизмом разных типов соединений независимо друг от друга. Такая селективность появляется благодаря тому, что у каждого из веществ колебания связей происходят на своей длине волны, при этом в качестве вспомогательных данных можно использовать и данные о колебаниях связей углерод-водород.
Работоспособность предложенной методики ученые показали на клетках различных органов мыши (в частности — кишечника, печени, коры головного мозга, поджелудочной железы и мышц). В качестве показательного примера авторы работы продемонстрировали, как происходит синтез белков и жиров и перераспределение молекул белков и ДНК во время клеточного деления.
Этот же метод авторы работы использовали для визуализации метаболических процессов, которые протекали в клетках других животных, в частности нематоды Caenorhabditis elegans и данио-рерио (Danio rerio). При этом ученые отмечают, что предложенный микроскопический подход можно использовать не только в статике, но и при изучении достаточно быстрых процессов в движущихся животных.
Кроме того, вынужденное рамановское рассеяние с использованием тяжелой воды можно применять и для изучения метаболических процессов на более длительных временах — в частности, авторам удалось проследить, как в организме взрослой нематоды в процессе развития зародышевых клеток в течение 8 дней перераспределялась концентрация белков и жиров. В частности, ученым удалось наблюдать активный синтез соединений, которые постепенно накапливались в ооцитах, и оценить изменение скорости замедляющегося липогенеза.
По словам авторов исследования, разработанный ими метод в будущем может оказаться перспективным для более детального изучения метаболических процессов на разных стадиях развития организмов — в частности, большинство методов, использовавшихся до этого, не позволяли разделить сигнал от белков и жиров, что сильно ограничивало их возможности. Кроме того, этот подход может оказаться полезным, например, для изучения раковых опухолей.
В последние годы ученым удается постоянно совершенствовать микроскопические методы исследования динамики живых клеток и химических реакций внутри них. Это касается не только подходов, основанных на оптической микроскопии сверхвысокого разрешения, которые позволяют следить за движением белков и получать видео с частотой до 200 кадров в секунду, но и менее традиционных методов, например атомно-силовой микроскопии.
Александр Дубов
Также на когнитивное снижение повлияли варианты Гена APOE: аллель APOE4 его ускорила, а аллель APOE2 — замедлила
Исследователи из Колумбии и США изучили, как генотип аполипопротеина и годы образования влияют на когнитивные функции при наследственной болезни Альцгеймера. Выяснилось, что у носителей мутации PSEN1 E280A, связанной с семейной болезнью Альцгеймера, когнитивное снижение наступает раньше и развивается быстрее, если у них в то же время есть аллель APOE4, а у таких же носителей, но с аллелью APOE2, это снижение происходит медленнее. Также более медленное снижение когнитивных способностей было характерно для пациентов, которые больше лет жизни потратили на учебу, — и это к тому же ослабляло влияние особенно опасных вариантов APOE. Результаты опубликованы в Nature Communications. При семейной или наследственной болезни Альцгеймера (БА) когнитивный спад наступает рано и за несколько лет прогрессирует до слабоумия. Семейную болезнь Альцгеймера вызывают некоторые мутации, например, мутация E280A в гене мембранного белка пресенелина PSEN1. Еще один ген, влияющий на развитие и течение БА — ген белка аполипопротеина Е (APOE). Разные варианты этого гена связаны с большим или меньшим риском спорадической (ненаследственной) болезни Альцгеймера: аллель APOE4 повышает риск, а аллель APOE2 снижает его. О том, как варианты APOE влияют на развитие семейной БА известно мало. Одно небольшое исследование показало, что деменция у носителей мутации PSEN1 E280A наступает раньше, если у них есть аллель APOE4. Другое исследование не обнаружило влияния APOE4, но выявило, что аллель APOE2 задерживает клиническое начало заболевания примерно на 8 лет. Кроме того, на развитие БА влияют другие факторы: образ жизни, социально-экономические условия и другие показатели здоровья. Стефани Лангелла (Stephanie Langella) из Гарвардской медицинской школы вместе с коллегами из Колумбии и США решила выяснить, как варианты APOE и количество лет учебы влияют на когнитивные показатели пациентов с наследственной БА (исследователи не выделяли отдельно высшее образование или ученую степень, а смотрели именно на число лет, уделенных образованию). Для этого они проанализировали данные 675 носителей мутации E280A и 594 пациентов, у которых этой мутации не было. Носители и неносители мутации были членами одних и тех же семей. Ученые сравнивали баллы пациентов в краткой шкале оценки психического статуса (MMSE), которую используют для диагностики клинических проявлений деменции. Баллы MMSE у носителей и неносителей мутации PSEN1 E280A начинали различаться уже в возрасте 31,5 года — с этого момента когнитивные показатели носителей снижаются намного быстрее. У пациентов с мутацией E280A, у которых также была аллель APOE4 (141 человек), клиническое начало БА было более ранним, а у пациентов с мутацией E280A, но без аллели APOE4 (534 человека) — наоборот, наступало позже. Расхождения начинались в возрасте 44,3 лет — как раз во столько появляются первые признаки болезни Альцгеймера у пациентов с наследственной формой. Другая аллель, APOE2, напротив, была связана с более медленным когнитивным снижением в группе носителей PSEN1 E280A. А вот когнитивные траектории пациентов без мутации E280A были примерно одинаковыми и не зависели в от варианта APOE. Также исследователи обнаружили, что возраст начала клинических проявлений БА у пациентов с мутацией PSEN1 E280A зависел от количества лет, которые они потратили на учебу. Их когнитивные показатели снижались тем медленнее, чем больше они учились, — и это проявлялось особенно сильно у носителей аллели APOE4 и неносителей APOE2. То есть отрицательный эффект аллели APOE4 ослаблялся. Почти то же было и с неносителями мутаций, связанных с БА: более долгая учеба была связана с более высокими баллами MMSE, но здесь варианты APOE роли не играли. Пока не ясно, как именно аллель APOE4, связанная с большим риском, ухудшает течение семейной болезни Альцгеймера, и как другая аллель — APOE2 — от нее защищает. Но, как видно, большая продолжительность учебы снижает дополнительный риск. А иногда от вредного действия мутаций защищают другие мутации. Недавно исследователи обнаружили мутацию, которая отсрочила развитие семейной болезни Альцгеймера у мужчины. Это был редкий вариант гена RELN — H3447R или RELN-COLBOS. Клинические проявления начались у пациента почти на 20 лет позже обычного. Мужчина был не первым счастливчиком: до этого подобный случай был с женщиной, у нее мутация была как раз в гене APOE.