Американские исследователи изучили структуру и особенности работы белка VP35 летучих мышей из рода Myotis, ген которого происходит из генома вируса Эбола. Оказалось, что за 18 миллионов лет, которые прошли с момента заимствования гена, белок сохранил свою структуру и по-прежнему способен подавлять иммунитет. Тем не менее, как признались ученые в научной публикации в журнале Cell Reports, конкретную функцию белка VP35 в организме летучих мышей им установить не удалось.
Летучих мышей считают природным резервуаром вирусов, опасных для человека: так, они участвуют в распространении вируса лихорадки Марбург и, вероятно, лихорадки Эбола. В процессе совместной жизни летучие мыши успели позаимствовали гены у вирусов: так, несколько лет назад в геномах летучих мышей из рода Myotis (ночницы) обнаружили последовательность, родственную последовательности гена, кодирующего вирусный белок VP35. Этот белок при заражении вирусом Эбола подавляет врожденный противовирусный иммунитет, обусловленный активацией интерферонового каскада. В отсутствие VP35 вирус заражать клетки не способен. О том, что он делает в организме летучих мышей, ничего не было известно.
По оценкам специалистов, вирусный ген был позаимствован мышами около 18 миллионов лет назад. Интересно, что обычно млекопитающим достаются в наследство элементы ретровирусов, в жизненный цикл которых входит стадия интеграции в геном хозяина. Однако вирусы Эбола и Марбург относятся к другой группе РНК-вирусов и не нуждаются в этой стадии. Вероятно, ДНК-копия вирусного гена появилась в клетке и встроилась в геном в результате активности хозяйских ферментов.
Исследователи из Государственного университета штата Джорджия (США) под руководством специалиста по Эболе Кристофера Баслера (Christopher Basler) синтезировали белок VP35 ночниц и проанализировали его структуру и функциональные особенности. Оказалось, что за миллионы лет ген не сломался, как случается со многими случайно позаимствованными генами, и кодирует функциональный белок. Более того, аминокислотный состав белка указал на то, что его последовательность все это время была предметом как отрицательного, так и положительного отбора. Это означает, что в организме летучих мышей белок действительно зачем-то нужен. Структура VP35 ночницы оказалась практически идентичной структуре исходного вирусного белка.
Так как у вирусов VP35 выполняет функцию подавления активации дендритных клеток (клеток врожденного иммунного ответа) и интерферонового ответа, ученые проверили, способен ли делать то же самое мышиный белок. Оказалось, что как в клетках самих животных, так и в клетках человека мышиный VP35 подавляет активацию генов интерферонового ответа, хотя и в меньшей степени, чем вирусный белок.
Так как исследователи не смогли засечь экспрессию VP35 в различных тканях летучей мыши, они не смогли идентифицировать его точную функцию. Авторы работы только предположили, что белок играет роль в регуляции врожденного иммунитета.
Вирусы нередко становятся «двигателем эволюции» для своих хозяев: так, геномы млекопитающих содержат значительный процент вирусных последовательностей, которые в свое время повлияли на регуляцию тех или иных генов. Вероятно, благодаря такому заимствованию в процессе эволюции млекопитающих произошло
.
Дарья Спасская
Он оказался высокоактивным лигандом рецептора иммунных клеток
Японские и нидерландские ученые обнаружили в клеточной стенке микобактерии лепры (Mycobacterium leprae) фенольный гликолипид-III (PGL-III), который ответственен за запуск иммунного ответа в зараженном организме. Как сообщается в статье, опубликованной в журнале ACS Central Science, инициация иммунохимических реакций происходит за счет активации кальций-зависимого рецептора лектина (Mincle-рецептор), для которого PGL-III выступает крайне активным лигандом. Микобактерия лепры при попадании в организм человека может вызывать проказу, которая в основном поражает кожу, периферические нервы и глаза. В 2021 году зарегистрировано более 140 тысяч новых случаев проказы, в том числе от нее пострадали более девяти тысяч детей. Хотя проказу можно вылечить с помощью комплексной лекарственной терапии, она до сих пор приводит к инвалидизации и неизгладимым обезображиваниям людей в странах Африки и Азии. Считается, что тяжелые поражения моторной функции при проказе вызваны специфическим воспалением, однако его патогенез до сих пор плохо изучен. Важным антигеном, который отвечает за иммуногенность микобактерии лепры, считается фенольный гликолипид-I (PGL-I), который составляет до двух процентов массы бактериальных клеток. При этом PGL-I обладает мощным иммуносупрессивным действием, из-за которого M. leprae способна вызывать хроническую инфекцию. Однако окончательная роль подобных антигенов в развитии симптомов проказы изучена плохо. Чтобы исправить это положение, команда ученых под руководством Йерун Коде (Jeroen Codée) из Лейденского университета и Шо Ямасаки (Sho Yamasaki) из Университета Осаки исследовали потенциальные иммуноактивные компоненты в гликолипидной клеточной стенке M. leprae. Сначала ученые обнаружили, что липиды клеточной стенки микобактерии лепры активируют клетки миелоидного происхождения (макрофаги, нейтрофилы) с помощью кальций-зависимого рецептора лектина (Mincle-рецептор). По такому же пути их активировали липиды клеточной стенки M. tuberculosis и M. smegmatis. Затем ученые разделили липидные экстракты с помощью высокоэффективной тонкослойной хроматографии, чтобы охарактеризовать наиболее иммуноактивный компонент. Фракционирование с использованием разных комбинаций растворителей выявило липид, избирательно активирующий клеток, экспрессирующие Mincle-рецепторы. Как выяснилось с помощью матрично-активированной лазерной десорбции/ионизации (MALDI-TOF-MS) этот липид крайне похож на PGL-I, однако в нем отсутствует одна метильная группа в углеводной части. Поскольку в процессе биосинтеза PGL-I образуется несколько промежуточных продуктов, подобных PGL-I, ученые решили проанализировать этот путь, чтобы выяснить природу этого липида. После введения различных генов в экспериментальные модели M. marinum, ученые выделили несколько промежуточных продуктов биосинтеза PGL-I, среди которых выделялись PGL-II, так и PGL-III, которые были описаны ранее. Методом органического синтеза ученые создали чистые образцы PGL-I, II и III, чтобы проверить их активность взаимодействия с Mincle-рецептором. С помощью спектроскопия ядерного магнитного резонанса ученые выяснили, что тем самым липидом, специфически активно связывающимся с Mincle-рецептором и через него активирующим клетки иммунной системы был PGL-III. Это неожиданное открытие, поскольку ранее сообщалось о том, что лигандами этих рецепторов могут быть только моно- и дисахариды концы гликолипидов, однако PGL-III имеет трисахаридный углеводный конец. Дальнейшие анализы показали, что синтетический PGL-III проявлял намного бОльшую, чем PGL-I и -II, лигандную активность в отношении Mincle-рецепторов мыши и человека. Учитывая его низкую концентрацию и относительную активность, удельная активность PGL-III, по-видимому, достаточно высока. Синтетический PGL-III активировал первичные макрофаги с помощью Mincle-рецепторов, после чего они начинали вырабатывать провоспалительные цитокины фактор некроза опухоли и интерлейкин-6. Кроме того, PGL-III индуцировал экспрессию NO-синтазы. То есть PGL-III микобактерии лепры выступает мощным иммуностимулирующим агентом, запускающим высвобождение провоспалительных цитокинов, будучи высокоактивным лигандом Mincle-рецепторов. В эксперименте с мышами с нокдауном генов, ответственных за экспрессию Mincle-рецепторов, заражение их микобактерией лепры приводило у них к значительной бактериальной нагрузке, что говорит о решающей роли Mincle-рецепторов в индукции иммунных реакций при проказе. Ученые считают, что метилтрансфераза, которая ответственна за метилирование PGL-III, может стать терапевтической мишенью при лечении проказы, поскольку ее ингибирование должно приводить к накоплению PGL-III и большему иммунному ответу организма. При этом будет снижаться концентрация PGL-I, которая провоцирует воспаление и считается фактором вирулентности. Считается, что проказа — болезнь человека. Однако в 2021 году зоологи описали случай проказы у диких шимпанзе. При этом с высокой вероятностью они заработали болезнь от мелких млекопитающих, а не от человека.