Химики разработали метод получения наночастиц из оксида кремния размером от 10 до 1000 нанометров в форме треугольников, квадратов, кубов, тетраэдров и других плоских и объемных фигур. В качестве матрицы для этих частиц исследователи предложили использовать структуры из нуклеиновых кислот, полученные с помощью метода ДНК-оригами, которые затем покрываются слоем оксида кремния. В дальнейшем полученные частицы могут использоваться для получения метаматериалов или создания плазмонных наноустройств, пишут ученые в Nature.
За счет наличия в структуре молекул ДНК комплементарных элементов, способных избирательно соединяться между собой, из них можно собирать структуры заданной формы. На такой сборке основан метод ДНК-оригами, который довольно давно и успешно используется для создания довольно сложных двумерных и трехмерных структур массой до гигадальтона. Эти структуры огромных по меркам молекулярного мира размеров можно использовать как сами по себе, так и в качестве матриц для получения других наноматериалов. Например, объединив метод ДНК-оригами с традиционными литографическими методами, химикам удалось получить золотые наночастицы в форме креста и галстука-бабочки, которые потом можно использовать в качестве плазмонных наноантенн.
Группа исследователей из Китая и США под руководством Чуньхая Фаня (Chunhai Fan) из Шанхайского института прикладной физики предложила похожим образом получать наночастицы заданной формы, но уже не из золота, а из основе оксида кремния. Как и при синтезе золотых частиц, форма частиц из оксида кремния повторяла форму ДНК, однако воспроизведение структуры в предложенной технологии происходит не с помощью литографических методов (где ДНК служит маской для травления), а за счет непосредственной замены ДНК на оксид кремния. Чтобы провести синтез частиц из оксида кремния, ученые сначала получили по отработанным процедурам ДНК-оригами нанометровые частицы, полностью состоящие из двойных спиралей ДНК. После этого, к торчащим из цепочки ДНК наружу фосфатным группам присоединялись этоксисилановые молекулы, содержащие в своем составе аммонийные группы. После присоединения к ДНК первого слоя молекул дальнейший рост осуществлялся за счет использования этоксисиланов, не содержащих азот. А дальнейший гидролиз приводил к образованию оксида кремния. Толщину слоя из кремния и кислорода химики меняли, просто увеличивая время роста.
С помощью экспериментов и компьютерного моделирования авторы работы подобрали такие параметры, при которых адсорбция кремний-содержащих молекул на ДНК и их гидролиз происходят с оптимальной скоростью. В результате метод «силицификации» ДНК-оригами удалось адаптировать для самых разных плоских и объемных структур.
Всего были получены частицы гибридного состава с ДНК-ядром девяти различных форм. Это были как плоские частицы: например в виде квадрата, треугольника или креста, — так и объемные: каркасные частицы в форме куба и тетраэдра, и объемные частицы в форме тора или пиалы. Размер каждой из этих частиц составил от 10 до 1000 нанометров. Структуру и состав частиц авторы работы подтвердили с помощью методов электронной и атомно-силовой микроскопии и картирования элементного состава.
С некоторыми из частиц исследователи провели и дальнейшие операции. Например, из шестиугольных плоских частиц ученым удалось собрать довольно протяженные упорядоченные плоские решетки. Для тетраэдрической частицы были проведены измерения механических свойств, которые показали, что при сжатии она ведет себя упруго и остается при этом довольно жесткой (ее модуль Юнга составляет около 1 гигапаскаля, что в 10 раз больше, чем до силицификации). Также ее механические свойства не теряются, если к некоторым ее граням присоединить золотые наностержни.
В дальнейшем ученые планируют адаптировать предложенный метод для получения и других неорганических частиц, состоящих, например, из фосфата или карбоната кальция или оксидов металлов. Также метод перспективен для синтеза слоистых частиц заданной геометрии. По словам авторов работы, использоваться эти частицы могут при создании метаматериалов или для плазмонных устройств.
Другая область, в которой использование метода ДНК-оригами считается крайне перспективным — медицинские технологии. Например, недавно китайским ученым удалось получить с помощью ДНК-оригами нанороботов, которые могут доставлять лекарство к опухолевым клеткам млекопитающих и вызывать образование тромбов.
Александр Дубов
Для этого они сплели сеть из стальной проволоки и обработали ее лазером
Канадские ученые создали покрытие с гидрофобными и антиобледенительными свойствами как у перьев пингвина. Это пористая сеть из стальной проволоки, поверхность которой дополнительно текстурирована лазером. При замерзании воды каждая пора становится центром механического напряжения, и во всей ледяной корке появляются маленькие трещины, которые потом растут и расширяются, и в итоге лед отваливается. Результаты исследования опубликованы в журнале ACS Applied Materials & Interfaces.Обледенение создает человечеству множество проблем: от необходимости раньше вставать зимой, чтобы успеть прогреть машину до крупных аварий из-за обрывов проводов и затруднения авиасообщения. Чаще всего ледяную корку удаляют механически либо топят с помощью нагревания и обработки спиртовыми растворами с низкой температурой замерзания. Однако, ученые работают и над созданием так называемых пассивных антиобледенительных материалов, сама структура которых затрудняет образование ледяного слоя. Чтобы сделать такое покрытие, нужно выполнить два частично противоречащих друг другу требования — уменьшить адгезию (сцепление) для твердого льда и жидкой воды. Для отталкивания воды ученые разрабатывают текстурированные поверхности с воздушной прослойкой между твердой и жидкой фазами. В этом случае время контакта воды с подложкой ограничено, и лед зачастую не успевает образоваться. Однако, если часть воды все же замерзла, на первый план выходит снижение адгезии льда — и здесь лучшие результаты показывают уже не текстурированные, а гладкие поверхности. Кроме того, гидрофобность большинства материалов зависит от температуры и влажности, а сами текстуры часто бывают хрупкими и теряют свои свойства после нескольких циклов удаления льда. Это делает разработку практичных антиоблединительных покрытий еще труднее.Энн Китциг (Anne Kietzig) и из ее коллеги из Университета МакГилл в Квебеке решили подойти к проблеме с другой стороны — сделать не такое покрытие, на котором ледяная корка никогда не образуется, а такое, с которого эта корка всегда будет легко отваливаться за счет образования трещин. Для этого надо было изучить, как зарождаются и растут трещины между слоем льда и подложкой и в самом слое льда, а также выяснить, какие свойства подложки этот процесс ускоряют. В итоге структуру материала Китциг и ее коллеги подсмотрели у оперения пингвинов Гумбольдта (Spheniscus humboldti). Эти птицы проводят много времени, охотясь в ледяной воде, но их оперение остается свободным ото льда, да и вода на нем долго не задерживается. Перо пингвина состоит из центрального стержня от которые отходят параллельные отростки (длиной до 1 сантиметра), а от них — отростки поменьше (длиной 10-20 микрометров). Поверхность больших и маленьких отростков покрыта параллельными бороздками на расстоянии примерно 0,5 микрометра друг от друга. Китциг и ее коллеги предположили, что пористая микрометровая структура способствует образованию трещин, а более мелкие бороздки в сочетании с гидрофобным кожным жиром обеспечивают водоотталкивающие свойства.Чтобы создать похожий пористый материал, ученые сначала сплели сетку из стальной проволоки. Экспериментируя с плотностью плетения, Китциг и ее коллеги получили материал с порами размером от семи до пятнадцати микрометров. Затем готовые сетки дополнительно обработали лазером, в результате на металле образовались периодические структуры ([laser-induced periodic surface structures, LIPSS) — бороздки высотой около одного микрометра на расстоянии 0,5 микрометра друг от друга, очень похожие на те, которые покрывают перья пингвинов. Роль гидрофобного жира в новом материале выполнял тонкий гидрофобный углеродистый слой, который вырастили на готовых LIPSS-текстурах с помощью обработки горячим углекислым газом. Чтобы изолировать вклад химии и текстурирования, ученые сделали также образцы и с гидрофильным оксидным покрытием и контрольную группу вообще без покрытия. Материалы показали отличные водоотталкивающие свойства: до обработки лазером сетки имели краевой угол смачивания 120 градусов, с LIPSS-текстурами и гидрофобным покрытием — до 150 градусов. Гидрофобность оказалось достаточно стабильной: контактный угол не менялся после пяти циклов замерзания и стряхивания льда. Эксперименты по стряхиванию льда проводили двумя способами — с помощью настольного прибора собственной конструкции и в аэродинамической трубе при температуре −20 градусов Цельсия (так ученые имитировали атмосферное обледенение при полете самолета). Все образцы отлично стряхивали лед — на 95 процентов эффективнее, чем нетекстурированная сталь в тех же условиях. Адгезия льда тоже была значительно ниже — 10-15 кПа против 600 кПа у нетекстурированной стали. (Считается, что для пассивного удаления льда достаточно снизить адгезию до 20 кПа). Рекордсменом оказался образец с самым «рыхлым» плетением, то есть с самым большим объемом пор. Авторы особо отметили, что LIPSS-текстурирование не увеличивало адгезию льда: напротив, в некоторых случаях образцы с LIPSS стряхивали воду даже более эффективно. Наличие гидрофобного и гидрофильного покрытий тоже лишь в небольшой степени влияло на результат. Авторы предположили такой механизм стряхивания льда: замерзание идет с выделением тепла, которое надо куда-то передать. Снаружи теплообмен происходит быстрее, поэтому лед над поверхностью пор образуется раньше, чем в глубине пор. В определенный момент жидкая вода в глубине поры оказывается погребена под слоем уже сформировавшегося льда. Когда, наконец, и эта последняя вода замерзает и расширяется (так как плотность льда ниже плотности воды), в слое льда над каждой порой возникает механическое напряжение. По мере накопления напряжения по всему материалу образуются первые трещины. Постепенно трещин становится больше, а сетчатая текстура помогает им вырасти и распространиться, и, наконец, слой льда теряет целостность и отделяется от поверхности материала. Чем больше объем пор, тем быстрее идет это процесс. Таким образом, Китциг и ее коллегам впервые удалось соединить в одном материале водоотталкивающие и антиобледенительные свойства. Авторы также отмечают, что все полученные материалы стабильны и их можно будет нагревать, механически чистить, то есть использовать все традиционные способы борьбы с обледенением.Ученые уже не в первый раз подсматривают у природы идеи для разработки гидрофобных материалов. Например, в 2019 году японские материаловеды создали покрытие, напоминающее кожу рыбы-ежа. Материал из звездообразных частиц оксида цинка в мягкой полимерной матрице, выдерживал нагревание до температуры 110 градусов Цельсия и оставался супергидрофобным даже после тысячи циклов трения и сгибания.