Каждое воспоминание о конкретном месте в нашей памяти формируется достаточно сложно: сначала ему нужно пройти гиппокамп, чтобы там образовалась соответствующая нейронная сеть – энграмма, которая через некоторое «передается» в кору головного мозга а из гиппокампа она, как принято считать, стирается. Но немецкие исследователи на примере крыс выяснили, что в одной из его частей надолго остается общий «план» (стабильная энграмма) пространства, тогда как в других формируются модифицируемые детали (динамическая энграмма). Этим особенностям памяти посвящена статья, опубликованная в Nature.
В нашей повседневной жизни мы используем накопленные в прошлом знания и опыт, чтобы планировать будущее. Вся эта информация записана в конкретных нейронных ансамблях или энграммах. Клетки, словно паззлы, во время обучения объединяются в единый рисунок или паттерн активности, и его реактивация представляет собой записанный в памяти опыт. Эти энграммы в течение нескольких дней хранятся в гиппокампе, а затем передаются в кору больших полушарий.
Энграммы формируются следующим образом. Сначала большие потоки информации поступают из энторинальной коры, которая представляет собой условную точку входа, в зубчатую извилину гиппокампа, откуда гранулярные клетки, играющие роль трансформатора, передают уже более «разреженные» сигналы в высокоорганизованную сеть пирамидных нейронов в области СА3 гиппокампа. Считается, что этот процесс позволяет сформировать достаточно четкую структуру воспоминания, наполненную необходимыми подробностями.
Пирамидные нейроны CA3 проецируются в область CA1 – условную точку выхода из гиппокампа. В соответствии с идеей временного хранения памяти энграммы, расположенные в CA1 и CA2, с течением времени не обретают стабильность и стираются, однако, если гиппокамп искусственно стимулировать, то воспоминание удается вызвать снова. Почему так происходит, до сих пор оставалось неясно, и научная группа под руководством профессора Марлен Бартос из Фрайбургского университета посветила этому вопросу свою нынешнюю работу.
Авторы отмечают, что до сих пор не удавалось записывать активность гранулярных нейронов во время обучения более одного дня, поэтому дилемму разрешить не получалось. Однако, в этом исследовании они применили хроническую двухфотонную кальциевую визуализацию, которая позволила им зарегистрировать активность нейронов всех нужных полей гиппокампа во время того, пока мыши выполняли задачи на пространственную память в виртуальной среде.
Животные, бегая по вращающемуся колесу, слизывали вознаграждение (капли молока), при этом на экраны вокруг них проецировалась линейная виртуальная дорожка. В течение 10 дней они запоминали этот трек, а потом он начинал чередоваться с новым виртуальным окружением и новыми местами, где встречалась награда. Поначалу животные пытались слизывать молоко в старых местах, а потом запоминали его измененное положение. В это время с помощью двухфотонного микроскопа сквозь транскортикальные «окна» ученые наблюдали за активностью нейронов в ключевых для формирования воспоминаний зонах гиппокампа, куда вводился флуоресцентный кальциевый индикатор GCaMP6f. Одновременно удавалось зафиксировать работу около 500 нейронов.
Выяснилось, что в пирамидных нейронах зон CA1-CA3 записывались точные и контекстно-специфические, но постоянно изменяющиеся элементы воспоминаний об изученных пространственных ландшафтах. А вот в гранулярных клетках зубчатой извилины при этом возникал своеобразный пространственный код, остающийся стабильным в течение многих дней, но не обладающий деталями о месте или контексте.
Исследователи объяснили, что гиппокамп сочетает стабильное и динамическое кодирование воспоминаний, что вместе помогает сориентироваться в среде, уже изученной ранее. В пирамидных нейронах модифицируются существующие воспоминания, полученные в том же ландшафте, тогда как гранулярные клетки зубчатой извилины обеспечивают упрощенное, но стабильное представление о среде в целом, которое служит в качестве плана для «наслаивания» деталей. Такая схема кодирования позволяет связать воспоминания, полученные в одном и том же месте, но сохранить их различные «нюансы».
Ранее ученые уже установили, что воспоминания, например, о том, как пройти в библиотеку, формируются одновременно и в гиппокампе, и в коре больших полушарий.
Анна Хоружая
Исследование провели на личинках дрозофил
Японские исследователи в экспериментах с дрозофилами установили механизм влияния на нейропластичность фермента убиквитинлигазы, функции которого нарушены при синдроме Ангельмана. Как выяснилось, этот фермент в пресинаптических окончаниях аксонов отвечает за деградацию рецепторов к костному морфогенетическому белку, за счет чего устраняются ненужные синапсы в процессе развития нервной ткани. Отчет о работе опубликован в журнале Science. Синдром Ангельмана представляет собой нарушение развития, которое проявляется умственной отсталостью, двигательными нарушениями, эпилепсией, отсутствием речи и характерной внешностью. Его причиной служат врожденные дефекты фермента убиквитинлигазы Е3А (Ube3a), который присоединяет к белкам убиквитин, влияющий на их судьбу в клетке, в том числе деградацию. При синдроме Ангельмана сниженная активность Ube3a нарушает синаптическую пластичность в процессе нейроразвития, в частности элиминацию ненужных синапсов. Повышенная активность этого фермента, напротив, приводит к неустойчивости сформировавшихся синапсов и, как следствие, к расстройствам аутического спектра. Исследования постсинаптических функций Ube3a показали, что он играет роль в нейропластичности, в частности формировании дендритных шипиков. При этом, по данным иммунохимических и электронно-микроскопических исследований, в коре мозга мыши и человека этот фермент экспрессируется преимущественно пресинаптически. Учитывая высокую эволюционную консервативность Ube3a, сотрудники Токийского университета под руководством Кадзуо Эмото (Kazuo Emoto) использовали для изучения его пресинаптических функций сенсорные нейроны IV класса по ветвлению дендритов (C4da) личинок плодовой мухи дрозофилы. Число дендритов этих нейронов резко сокращается (происходит их прунинг) в первые 24 часа после образования куколки, а на последних стадиях ее развития дендриты разветвляются вновь уже по взрослому типу. Используя флуоресцентные метки различных биомаркеров нейронов, исследователи показали, что в ходе этого процесса ремоделированию подвергаются не только дендриты, но и пресинаптические окончания аксонов. Попеременно отключая разные компоненты участвующих в этих процессах молекулярных комплексов, ученые убедились, что для элиминации синапсов под действием сигнального пути гормонов линьки экдизонов необходима только Ube3a, но не куллин-1 E3-лигаза, участвующая в прунинге дендритов. Дальнейшие эксперименты с применением флуоресцентных меток и РНК-интерференции показали, что Ube3a активно транспортируется из тела нейрона в аксон двигательным белком кинезином со средней скоростью 483,8 нанометра в секунду. Создав мутантов с дефектами в различных участках Ube3a, авторы работы выяснили, что связанные с синдромом Ангельмана мутации D313V, V216G и I213T в среднем домене фермента, содержащем тандемные полярные остатки (TPRs), препятствуют его связи с кинезином и транспорту из тела нейрона в аксон. Как следствие, нарушается элиминация ненужных синапсов. Изменения в N-концевом цинк-связывающем домене AZUL и C-концевом HECT влияли на эти процессы в значительно меньшей степени. Ube3a принимает участие в убиквитинировании многих клеточных белков. Чтобы выяснить, какой из них опосредует элиминацию синапсов, авторы работы вызывали в нейронах избыточную экспрессию разных белков-мишеней Ube3a с целью насытить этот фермент и таким образом заблокировать его действие. Оказалось, что выраженные дефекты элиминации синапсов возникают при избыточной экспрессии тиквеина (Tkv) — пресинаптического рецептора к костному морфогенетическому белку (ВМР); прунинг дендритов при этом не затрагивается. Исследование нормальной экспрессии Tkv с помощью флуоресцентных меток показало, что ее уровень значительно снижается через восемь часов после начала формирования куколки. У мутантов, лишенных Ube3a, этого не происходило. Выключение гена tkv или другого компонента сигнального пути BMP — mad — восстанавливало элиминацию синапсов у таких мутантов, то есть за нее отвечает именно этот сигнальный путь. Это подтвердили, восстановив элиминацию синапсов у мутантов без Ube3a антагонистом BMP LDN193189, а также экспрессией белков Glued-DN или Dad, которые подавляют сигнальную активность Mad. Искусственное повышение пресинаптической экспрессии Ube3a в нейронах C4da вызывало массированную преждевременную элиминацию сформировавшихся синапсов и общее уменьшение синаптической передачи у личинок третьего возраста. Это происходило из-за чрезмерного подавления сигнального пути BMP. Таким образом, дефекты убиквитинлигазы Ube3a, лежащие в основе синдрома Ангельмана, приводят к избыточной активности сигнального пути BMP, вследствие чего не происходит устранение ненужных синапсов в процессе развития нервной системы. Этот сигнальный путь может послужить мишенью для разработки новых методов лечения этого синдрома, а возможно и расстройств аутического спектра, считают авторы работы. В 2020 году американские исследователи сообщили, что им удалось предотвратить развитие синдрома Ангельмана у мышей с мутацией материнской копии гена UBE3A. Для этого они с помощью системы CRISPR/Cas9 инактивировали длинную некодирующую РНК UBE3A-ATS, которая подавляет экспрессию отцовской копии UBE3A.