Астрономы обнаружили, что в далеких галактиках со вспышками звездообразования и в области звездообразования в близлежащей галактике гораздо больше массивных звезд, чем в галактиках, темпы звездообразования в которых ниже. Эти данные плохо соответствуют текущим представлениям об эволюции галактик и требуют их пересмотра. Статьи опубликованы в журналах Nature и Science, кратко об этом рассказывается в пресс-релизе на сайте Европейской Южной обсерватории.
В галактиках со вспышками звездообразования скорость образования новых звезд может более чем в сто раз превосходить скорость этого процесса в Млечном Пути. В таких системах массивные звезды (с массами более 8-10 масс Солнца) генерируют мощные потоки ионизирующего излучения и вещества, а также ударные волны, взрываясь как сверхновые, что влияет на динамическую и химическую эволюцию галактики. Исследование распределения масс звезд в таких объектах путем построения начальной функции масс может рассказать нам как об их развитии, так и об их роли в эволюции Вселенной, например понять, как самые первые галактики со вспышкой звездообразования способствовали реионизации Вселенной.
Масса звезды определяет ее будущую эволюцию, чем больше масса, тем больше яркость звезды и тем меньше продолжительность ее жизни. Зная долю звезд различных масс, формирующихся в галактике, ученые могут понять ход ее эволюции на протяжении долгого времени, например оценка обилия различных химических элементов в галактике или количества зарождающихся черных дыр, образующихся при гравитационном коллапсе массивных звезд. Поэтому большое внимание было уделено пониманию того, является ли начальная функция масс универсальной для многих галактик или сильно зависит от их свойств. За последние несколько десятилетий появились доказательства того, что в областях интенсивного звездообразования наблюдаются более массивные звезды, чем ожидалось, однако это требовало уточнения.
Группа астрономов под руководством Чжиюй Чжана (Zhi-Yu Zhang) при помощи системы ALMA (Atacama Large Millimeter/submillimeter Array) определила долю массивных звезд в четырех далеких и богатых газом галактиках со вспышкой звездообразования. Астрономы определяли отношение содержания изотопов 18O и 13C в межзвездной среде галактик. Кислород, углерод и их стабильные изотопы образуются исключительно путем нуклеосинтеза в звездах. При этом изотоп 13С образуется, в основном, в звездах с низкой и средней массой (менее 8 масс Солнца), а 18О — в более массивных звездах. Эти изотопы после смерти звезды попадают в межзвездную среду, поэтому определение отношение их количества помогает построить начальную функцию масс. Другая группа под руководством Фабиана Шнайдера (Fabian Schneider) исследовала распределение звезд по массам и возрасту в огромной области звездообразования Тарантул в соседней с нами галактике Большом Магеллановом Облаке при помощи спектрографа FLAMES (Fibre Large Array Multi Element Spectrograph), установленного на телескопе VLT (Very Large Telescope) в Чили.
Ожидалось, что галактики, наблюдавшиеся в ранней Вселенной, будут иметь более примитивную картину звездообразования, чем галактики, наблюдаемые в местной Вселенной, так как у них было меньше времени для развития. Однако оказалось, что отношение изотопов 18O/13C для этих галактик в 10 раз больше, чем для Млечного Пути. Это значит, что в этих галактиках со вспышками звездообразования доля массивных звезд гораздо выше. В туманности Тарантул наблюдается похожая картина — звезд с массами более 30 и 60 масс Солнца оказалось гораздо больше, чем ожидалось. Эти результаты позволяют предположить, что верхний предел массы звезд может доходить до 150-300 масс Солнца и требуют пересмотра существующих космологических моделей и моделей образования популяций звезд в галактиках.
Ранее мы рассказывали о том, как астрономы показали полет вглубь звездной «колыбели» и нашли гнездо молодых галактик в паутине темной материи, а также как молекулярный ион CH+ поведал ученым о вспышках звездообразования в далеких галактиках.
Александр Войтюк
Это заметил телескоп VLT
Астрономы при помощи телескопа VLT определили, что за отражательные свойства наблюдавшегося в 2018 году на Нептуне нового темного вихря и сопутствовавшего ему яркого пятна отвечали частицы дымки из одного и того же слоя аэрозолей. Это означает, что свойства антициклонов на планетах-гигантах сильно зависят от положения средней плоскости вихря в атмосфере планеты. Статья опубликована в журнале Nature Astronomy. Вихри планетарного масштаба представляют собой обычное явление в атмосферах планет-гигантов Солнечной системы. Самый известный пример — гигантский антициклон Большое Красное Пятно на Юпитере, которое наблюдается более трехсот лет. В 1989 году зонд «Вояджер-2» обнаружил на Нептуне еще один крупный ураган, которым стал антициклон Большое Темное Пятно, его размер около десяти тысяч километров. Однако этот вихрь наблюдался всего лишь около семи месяцев, в дальнейшем в атмосфере ледяного гиганта обнаруживались и другие недолговечные темные вихри, как в его северном, так и в южном полушарии. Группа астрономов во главе с Патриком Ирвином (Patrick Irwin) из Оксфордского университета опубликовала результаты анализа данных наблюдений в октябре-ноябре 2019 года, проведенных при помощи спектрографа MUSE, установленного на наземном комплексе телескопов VLT. Наблюдения за атмосферой Нептуна велись в оптическом и ближнем инфракрасном диапазоне. Их целью был обнаруженный в 2018 году темный вихрь NDS-2018 в северном полушарии планеты. Пятно имело такой же размер, как и Большое Темное Пятно, и постепенно сместилось к экватору Нептуна, прежде чем, по-видимому, исчезло в конце 2022 года. Ученые определили, что темная окраска вихря вызвана хромофором, находящимся в слое аэрозолей при давлении более 5–7 бар, содержащим сероводород (H2S). Он, в свою очередь, может подвергаться фотолизу ультрафиолетовым излучением Солнца, поднимаясь, или же фотолиз сероводорода идет в ледяных оболочках частиц дымки, переносимых вниз из стратосферы. В результате частицы в слое становятся менее отражающими излучение с длинами волн короче 700 нанометров. Кроме того, исследователи обнаружили, недолговечное яркое пятно DBS-2019, располагавшееся на юго-западном краю вихря NDS-2018, которое связывается с тем же слоем аэрозолей при давлении в 5 бар. По мнению ученых, эта структура принципиально отличается от ранее наблюдавшихся ярких метановых облаков-спутников Большого Темного Пятна, которые располагались значительно выше в атмосфере Нептуна, при давлении 0,6–0,2 бар. Ранее мы рассказывали о том, как трехслойная модель дымки объяснила разницу в цвете Урана и Нептуна.