Детектор XENON1T, содержащий 3,5 тонны ксенона (1,3 тонны в рабочем объеме), проработал 279 дней, но так и не обнаружил частицы темной материи. Это практически исключает существование гипотетических частиц — вимпов — с массами от 6 до 200 гигаэлектронвольт. Статья о результатах работы принята к публикации в Physical Review Letters, кратко о ней сообщает пресс-релиз организации.
Темная материя составляет около 20 процентов массы Вселенной, однако все свидетельства в пользу ее существования, такие как кривые вращения галактик, гравитационное линзирование и измерение темпа расширения Вселенной, носят гравитационный характер. Физики до сих пор не знают, из чего состоит темная материя. Это не могут быть частицы Стандартной модели, поскольку они испускали бы электромагнитное излучение и были бы обнаружены с помощью телескопов. Поэтому ученые считают, что темная материя состоит из каких-то неизвестных частиц, которые практически беспрепятственно проходят сквозь обычное вещество, но имеют достаточно большую суммарную массу, чтобы проявлять себя в гравитационных взаимодействиях.
Основной кандидат на гипотетические частицы темной материи — это вимпы, слабо взаимодействующие массивные частицы (Weakly Interacting Massive Particles, WIMP). Предполагается, что эти частицы имеют массу порядка 1-100 гигаэлектронвольт (то есть массивнее протона) и участвуют только в слабом и гравитационном взаимодействии, поэтому сечение их взаимодействия с обычными частицами должно быть очень маленьким, хотя и отличным от нуля. Теоретически, это позволяет зарегистрировать частицу, если соорудить большой детектор, содержащий очень много атомов вещества, и наблюдать за ним в течение долгого времени. Рано или поздно вимп столкнется с ядром одного из атомов и вызовет характерную вспышку, которую можно увидеть с помощью стандартных измерительных приборов. По величине отдачи частицы можно оценить массу вимпа, а по частоте вспышек — сечение взаимодействия. В свое время этот способ был проверен на нейтрино, которые тоже очень слабо взаимодействуют с веществом, однако для частиц темной материи подобные события пока не наблюдались.
Детектор XENON1T относится именно к такому типу установок. В качестве рабочего тела в нем используется 3,5 тонны жидкого ксенона, охлажденного до температуры около 178 градусов Кельвина (−95 градусов Цельсия). Правда, эффективно из них «работают» только 1,3 тонны, находящиеся в центре детектора (так называемый fiducial volume), защищенные от фонового шума периферийными областями и дополнительным слоем воды толщиной около 10 метров. Объем детектора постоянно просматривают чувствительные фотодетекторы, которые могут заметить слабую вспышку, которая возникает при столкновении вимпа с атомом ксенона. Кроме того, детектор пронизывает сильное электрическое поле, которое ускоряет электроны, оторвавшиеся от атома при столкновении, и направляет их на слой сцинтиллятора, расположенный около крышки камеры. Измеряя временную задержку между событиями, ученые оценивают параметры частицы, столкнувшейся с атомом, и отсеивают лишние события (например, события, отвечающие столкновению с мюоном).
По оценкам ученых, рассчитанным на основании данных предыдущих экспериментов, за 279 дней наблюдений детектор должен был зарегистрировать одно-два события, отвечающих столкновениям с вимпами. К сожалению, в действительности подобные события не наблюдались. Таким образом, эксперимент устанавливает самые жесткие ограничения на сечение взаимодействия вимпов с частицами обычной материи — как следует из экспериментальных данных, оно не должно превышать 10−47 квадратных сантиметров в диапазоне масс от 6 до 200 гигаэлектронвольт.
История проекта XENON началась более 10 лет назад — первая версия детектора начала работать в марте 2006 года и содержала 15 килограммов жидкого ксенона (5 килограмм в рабочей области). В 2008 году объем рабочей области детектора был увеличен до 62 килограмм; это позволило ученым увеличить чувствительность установки на несколько порядков и опровергнуть результаты группы DAMA, заявлявшей о регистрации сезонных колебаний сигнала темной материи. Работа над текущей версией детектора, содержащей 3,5 тонны благородного газа, закончилась в ноябре 2015 года, а результаты первого пробного запуска, продлившегося около месяца, были опубликованы в мае прошлого года. Разумеется, в тот раз детектор тоже ничего не нашел. Тем не менее, физики не теряют надежды и продолжают совершенствовать детектор — так, в следующей его версии масса рабочей области будет доведена до четырех тонн, а фоновый шум снижен в десять раз.
Стоит отметить, что конструкция детектора XENON1T позволяет ему «чувствовать» только частицы с массой от 6 до 200 гигаэлектронвольт — другими словами, нельзя утверждать, что результаты измерений полностью исключают вимпы. Как бы то ни было, это серьезный аргумент против их существования, а отрицательные результаты других экспериментов по поиску вимпов только усугубляют ситуацию. Поэтому в последнее время физики постепенно переключаются на проверку других теорий, в которых частицы темной материи обладают совершенно другими свойствами — например, сверхлегких аксионов или первичных черных дыр. Тем не менее, эти поиски тоже пока еще не увенчались успехом.
Дмитрий Трунин
Физикам помогла простая математическая модель
Британские теоретики попытались разобраться, почему при слишком мелком помоле эспрессо получается невкусным. Для этого они построили простую модель протекания жидкости через два канала с пористым молотым кофе. Оказалось, что слишком мелкий помол запускает механизм с положительной обратной связью, из-за которого жидкость течет только по одному из каналов. Кофе во втором канале при этом остается недоэкстрагированным. Исследование опубликовано в Physics of Fluids. Для приготовления эспрессо нужно пропускать достаточно горячую воду под большим давлением через фильтр с молотым кофе. Люди научились готовить эспрессо еще в XIX веке, и с тех пор методом проб и ошибок сложилась практика получения наилучшего вкуса кофе. Однозначно формализовать качество кофе непросто, но чаще всего специалисты ориентируются на уровень (или выход) экстракции кофе — массовую долю растворившихся в воде химических компонентов зерен. В попытках разобраться в том, какая физика стоит за приготовлением эспрессо, несколько лет назад Фостер с коллегами провели экспериментальное и численное исследование этого процесса. Ученые уделили особое внимание помолу: модель предсказывала, что, чем меньше размер зерен, тем больше экстракция. Но эксперименты показали, что так происходит лишь до определенного порога, меньше которого уровень экстракции начинает снижаться. Этот эффект известен баристам давно. Его объясняют тем фактом, что при слишком мелком помоле в таблетке с кофе пробиваются паразитные каналы, через которые вода почти полностью утекает, игнорируя остальную кофейную массу. Фостер с коллегами учли этот факт, дополнительно наложив на модель ограничение на площадь экстракции. Тем не менее, остается проблема учета этого эффекта из первых принципов. Уильям Ли (William Lee) из университета Хаддерсфилд был одним из соавторов статьи Фостера. Ранее он с коллегами уже проводил независимые вычисления, связанные варкой кофе. На этот раз целью его группы стал вопрос о том, как именно происходит неравномерная экстракция при варке методом эспрессо. Для ответа на этот вопрос, физики построили довольно простую модель просачивания жидкости через два канала с пористым веществом. За основу они взяли уравнение Козени — Кармана, выведенное для упаковки сферических частиц. Вместе с ним авторы учли тот факт, что вещество помола экстрагируется в жидкость, уменьшая объем порошка. Решая полученные дифференциальные уравнения, физики смогли качественно воспроизвести главный эффект: по мере уменьшения размера зерен выход экстракции также спадает. Динамика потоков по каждому из каналов позволила понять, почему так происходит. Оказалось, все дело в механизме положительной обратной связи: чем больше протекает воды через канал, тем больше извлекается вещества и тем больше становится его пористость, а значит тем меньше сопротивление канала. В какой-то момент поток в одном из каналов становится максимальным, а в противоположном — падает почти до нуля. Несмотря на качественное объяснение, которое дала модель, ее количественные оценки разошлись с экспериментальными данными. Этот факт авторы объяснили простотой модели. В частности, они не учли стратификацию кофейной массы, а также использовали мономодальное распределение частиц, вместо бимодального, которым обладает реальный помол. Помимо усложнения модели, физики планируют включить в нее альтернативное объяснение эффекта, связанного с мельчанием помола, который заключается в закупоривании каналов зернами. Кофе — это один из немногих продуктов и в целом аспектов человеческой деятельности, который исследует огромное количество научных дисциплин от математики до экспериментальной психологии. Подробнее об этих исследованиях читайте в серии материалов и блогов «Сварен на калькуляторе», «Кофе (не) убьет», «Чашечку кофе?», «Кофе: проклятие четырех чашек».