Стелларатор Wendelstein 7-X доказал свою работоспособность в серии экспериментов, проведенных в 2016-2017 годах — дестабилизирующий плазму бустрэп-ток удалось уменьшить почти в четыре раза, а время удержания плазмы получилось довести до 160 миллисекунд. На данный момент это лучший результат среди стеллараторов. Статья немецких физиков, подводящая итоги серии экспериментов, опубликована в Nature Physics, кратко о работе ученых рассказывается в редакционной колонке News & Views.
Физики обещают построить термоядерный реактор уже более шестидесяти лет (с тех пор, как было испытано термоядерное оружие), однако создать действующие коммерческие установки им до сих пор так и не удалось. Дело в том, что для осуществления долгосрочного термоядерного синтеза в реакторе необходимо достаточно долго удерживать плазму, разогретую до огромной температуры порядка десяти миллионов градусов. Как правило, физики используют для этого мощные сверхпроводящие магниты, создающие сильные магнитные поля и не дающие плазме коснуться стенок. К сожалению, намагниченная плазма очень нестабильна — стоит небольшому кусочку плазмы отклониться от оптимальной траектории, как он выбрасывается на стенку и повреждает ее. Поскольку частицы в плазме постоянно сталкиваются друг с другом, рано или поздно такие выбросы происходят. Поэтому время удержания существующих термоядерных реакторов составляет всего несколько минут (разумеется, до безвозвратного прожигания стенки в реальных экспериментах дело стараются не доводить), а генерируемая в результате синтеза мощность превысила мощность, необходимую для поддержания реакции, всего несколько лет назад.
Наиболее распространенным типом термоядерных реакторов являются токамаки — тороидальные камеры с магнитными катушками, все современные рекорды в области термоядерного синтеза относятся именно к этому типу установок. В токамаке плазменный шнур удерживается с помощью тороидального поля внешних магнитных катушек и полоидального поля, создаваемого протекающим по шнуру электрическим током. Грубо говоря, магнитное поле токамака выглядит как бублик, на который намотаны линии напряженности магнитного поля. К сожалению, для работы этого типа термоядерного реактора электрический ток в плазме должен поддерживаться постоянно, что довольно сложно технически реализовать.
Тем не менее, токамаки — это не единственная возможная схема термоядерного реактора. Наряду с ними ученые разрабатывают стеллараторы, в которых поддерживать электрический ток внутри плазмы не нужно (он возникает сам собой), и можно обойтись только внешними магнитными полями. Как и у токамака, в основе стелларатора лежит тор, однако магнитные поля внешних катушек ведут себя гораздо хитрее, образуя систему замкнутых, вложенных друг в друга тороидальных магнитных поверхностей. Грубо говоря, в стеллараторе плазма образует «мятый бублик» вместо «ровного бублика» токамака (чтобы понять, о чем идет речь, лучше один раз посмотреть на рисунок). Это позволяет предотвратить «расплескивание» плазмы и теоретически должно повысить время ее удержания. Правда, рассчитать такую конфигурацию магнитного поля оказалось невероятно сложно — хотя впервые идея стелларатора была предложена еще в 1951 году, существенного прогресса в его разработке удалось достичь только к началу XXI века, когда для вычислений удалось привлечь суперкомпьютеры.
Wendelstein 7-X — это один из первых стеллараторов, наиболее близкий к управляемому термоядерному синтезу. Этот реактор состоит из 50 сверхпроводящих ниобий-титановых катушек высотой около 3,5 метров и общим весом около 425 тонн. Катушки способны создавать магнитное поле индукцией три тесла, удерживающее плазму с температурой более 60 миллионов градусов Кельвина, а суммарный объем плазмы может достигать 30 кубических метров. В новой работе ученые приводят результаты работы стелларатора в 2016-2017 годах, которые подтвердили, что в плазменном шнуре внутри установки возникает сравнительно слабый бутстрэп-ток (bootstrap current). В отличие от токамаков, в которых этот ток стремятся как можно сильнее увеличить, в стеллараторах от него стараются избавиться, поскольку он приводит к образованию угловых магнитных островов (edge magnetic islands) и дестабилизирует плазму. Новые измерения на Wendelstein 7-X показали, что величину этого тока удалось ослабить примерно в четыре раза по сравнению с токамаками; кроме того, током можно управлять, изменяя топологию магнитного поля. Это позволило ученым довести время удержания плазмы до 160 миллисекунд, что на данный момент является лучшим результатом среди стеллараторов.
Стоит отметить, что Wendelstein 7-X предназначен для «обкатки» работоспособности новой схемы, для коммерческого термоядерного синтеза он не предназначен. С токамаками он тоже пока соревноваться не может. Тем не менее, как показывает работа ученых, рассчитанная конфигурация магнитных полей действительно приводит к возникновению в плазме бутстрэп-тока и позволяет удерживать плазму в течение сравнительно длинного промежутка времени. В будущем эти показатели планируется увеличить на несколько порядков, а в силу конструктивных особенностей управлять стеллараторами будет гораздо удобнее, чем токамаками. В частности, по оптимистичным оценкам Джозефа Талмаджа (Joseph Talmadge), автора короткой заметки в Nature, посвященной Wendelstein 7-X, следующее поколение стеллараторов сможет достигнуть времени удержания порядка 30 минут, если разрабатываемый дивертор активного охлаждения будет корректно работать. Новая статья, подтвердившая, что бутстрэп-током, протекающим в плазме, можно сравнительно легко управлять, позволяет надеяться на такой результат.
Ранее мы уже писали о ключевых событиях в постройке стелларатора Wendelstein 7-X. Так, в декабре 2015 года на установке получили первую гелиевую плазму, нагретую до температуры около одного миллиона градусов, и удержали ее в течение 0,1 секунды. А в декабре 2016 года стелларатор прошел испытания магнитного поля, в результате которых ученые убедились, что создаваемая им магнитная поверхность отклоняется от спроектированной не более чем на одну стотысячную.
Дмитрий Трунин
Он расходится с последними теоретическими предсказаниями со статистической значимостью в 5σ
Физики представили новые результаты эксперимента Muon g-2 в Фермилабе по измерению аномального магнитного момента мюона. Согласно анализу данных двух новых сеансов измерений, физикам удалось больше чем в два раза уменьшить неопределенность измеренного значения. С учетом всех собранных Muon g-2 экспериментальных данных, новый результат противоречит последним предсказаниям Стандартной модели со статистической значимостью в 5,0σ. Согласно авторам статьи, препринт которой доступен на сайте эксперимента, статистическая значимость расхождения, вероятно, ослабнет, если включить в расчет предсказаний недавно опубликованные теоретические и экспериментальные результаты других коллабораций. Также о результатах эксперимента рассказывается на сайте ИЯФ имени Будкера, а запись научного семинара с докладом о последних результатах Muon g-2 доступна на YouTube.Значение магнитного момента мюона — одна из немногих напрямую измеряемых аномалий в современной физике, которая может указывать на существования физики за пределами Стандартной модели. Дело в том, что в это значение вносит вклад взаимодействие этого тяжелого лептона с существующими в нашей модели Вселенной виртуальными частицами. За счет большой массы мюона такой вклад различим на фоне хорошо предсказываемых электромагнитных поправок. Он же позволяет судить о существовании потенциально неоткрытых полей и частиц: расхождения измеренного значения магнитного момента и теоретических расчетов может указывать на неполноту теории. Однако сложность таких измерений в том, что относительная разница измеренного экспериментом и предсказанного теорией значений может проявляться только в шестом знаке после запятой. Для достижения такой точности измерений необходим большой массив экспериментальных данных, а также уверенность в том, что из их анализа были исключены любые систематические вклады и неопределенности в теории. Кроме того, сами предсказания Стандартной модели обладают погрешностью и зависят от параметров существующих в ней частиц и процессов. Два года назад мы уже рассказывали о природе аномального магнитного момента мюона и о том, как эксперимент Muon g-2 впервые увидел расхождение теории и эксперимента. Тогда в совокупности с данными двадцатилетней давности эксперимента-предшественника E821 в Брукхейвенской национальной лаборатории статистическая значимость расхождения составила 4,2 стандартных отклонения (или 4,2σ), чего лишь немного не хватило до общепринятого порога официального открытия в 5σ. Вчера участники коллаборации Muon g-2, в том числе физики из институтов Великобритании, Германии, Италии, Китая, России и США, представили результаты анализа данных двух новых сеансов измерений, которые состоялись в 2019 и 2020 годах. Полученное значение аномального магнитного момента совпало в пределах погрешности с результатами за первый сеанс измерений и эксперимента E821, а относительную точность измерения удалось уменьшить больше чем в два раза: с 0,46 до 0,20 миллионных долей. Как и в первом сеансе набора данных, магнитный момент мюона физики измеряли через разность циклотронной частоты и частоты спиновой прецессии поляризованных антимюонов (частица с противоположным по знаку мюону зарядом, но теми же свойствами) в накопительном кольце в сильном магнитном поле. Эта разность частот пропорциональна абсолютной величине аномального магнитного момента мюона и магнитному полю. Поэтому непрерывно измеряя магнитные поля внутри кольца с помощью ЯМР-проб, физики могли получить искомое значение магнитного момента. При этом сам антимюон в накопительном кольце достаточно быстро распадался на два нейтрино и позитрон, который за счет меньшей массы отклонялся в сторону внутреннего радиуса накопительного кольца, покрытого калориметрами. Искомую разность частот измеряли по колебаниям в количестве электронов, зарегистрированных с помощью этих детекторов. Столь сильно уменьшить погрешность измерений физикам удалось не только за счет увеличения количества набранных данных в 5 раз, но и благодаря оптимизации установки и процесса анализа данных. К примеру, ученые обернули кольцо в теплоизолирующий кожух и улучшили систему кондиционирования экспериментального холла, чтобы уменьшить колебания температуры, которые влияли на магнитное поле внутри установки. Большой вклад также внесли улучшение хранения пучка в кольце и оптимизация квадрупольных и дипольных магнитов в установке с обновленной техникой измерения их влияния на динамику пучка. В результате систематическая погрешность измерений составила всего 0,07 миллионных долей, что уже меньше цели эксперимента в 0,1 миллионных долей. К 2025 году физики собираются достигнуть цель и по статистической погрешности за счет обработки данных еще 3 сеансов набора данных, проведенных в 2021-2023 годах. Формально, с учетом всех собранных данных, измеренное экспериментом Muon g-2 значение аномального магнитного момента мюона уже сейчас противоречит предсказаниям Стандартной модели со статистической значимостью в 5σ, а с учетом данных эксперимента E821 — в 5,1σ. Однако участники коллаборации предостерегают от поспешных выводов: это сравнения с устаревшим расчетом теоретической группы эксперимента, опубликованным в 2020 году. По мнению ученых, недавно опубликованные данные эксперимента КМД-3 в Институте ядерной физики имени Будкера и теоретические расчеты коллаборации BMW должны повлиять на теоретические предсказания и потенциально сблизить их с экспериментально полученным значением. Еще одно прямое указание на Новую физику — переносчик слабого взаимодействия W-бозон. Год назад мы рассказывали о том, что измеренное коллаборацией CDF значение массы этой частицы разошлось с предсказаниями Стандартной модели на 7 стандартных отклонений.