Американские геологи подтвердили, что самый длительный из известных астрономических гравитационных циклов, который длится около 405 тысяч лет и приводит к периодическому изменению орбиты Земли и климату на ней, остается неизменным последние 215 миллионов лет. К таким выводам удалось прийти по результатам анализа изотопного состава горных пород, более чем в четыре раза увеличив длительность его существования, предсказанную теоретически, пишут ученые в Proceedings of the National Academy of Sciences.
Один из самых длительных астрономических циклов, который влияет на изменения климата на нашей планете — цикл изменения эксцентриситета орбиты вращения Земли вокруг Солнца, связанный с взаимным влиянием гравитационных полей Юпитера и Венеры. Этот цикл длится 405 тысяч лет и приводит к изменению формы орбиты Земли от круговой к слабо эллиптической и обратно. Согласно математическим расчетам, этот циклический процесс не претерпевал никаких изменений, как минимум, последние 50 миллионов лет, однако расчет устойчивости цикла на более длительных интервалах затруднен из-за сложности системы и большого количества входящих в нее взаимодействующих тел.
Поскольку возможности теоретического исследования и компьютерного моделирования этого эффекта довольно сильно ограничены, то единственным возможным источником информации об устойчивости гравитационного цикла, вызванного влиянием Юпитера и Венеры, на данный момент остаются эмпирические данные. Для проведения такого исследования группа американских геологов под руководством Денниса Кента (Dennis V. Kent) из Ратгерского университета исследовала состав горных пород, взятых в формации Чинле в национальном парке Петрифайд-Форест в Аризоне. Для этого ученые проанализировали изотопный состав урана и свинца в цирконе, найденном в кернах. Исходя из этих данных авторы работы провели реконструкцию изменения геомагнитной полярности на планете, в результате чего удалось датировать периоды нормальной и обратной магнитной полярности.
Полученные данные ученые связали с изменением эксцентриситета орбиты Земли и подтвердили таким образом неизменность гравитационного цикла длительностью 405 тысяч лет в течение последних 215 миллионов лет, то есть вплоть до позднего триаса и раннего юрского периода, когда на Земле активно развивались динозавры. По словам авторов работы, полученные данные подтвердили, что этот цикл — самый длительный и устойчивый из известных гравитационных циклов, влияющих на климат Земли. Раньше об этом можно было говорить лишь по косвенным свидетельствам.
Ученые отмечают, что сейчас наша планета находится в той фазе цикла, когда ее орбита имеет форму, близкую к круговой. При дальнейшем увеличении эксцентриситета климат на Земле станет значительно более резким: холоднее — зимой, и жарче — летом. При этом, по словам геологов, устойчивость этого цикла определяет не только некоторые из климатических изменений на Земле, но и влияет на эволюцию живых организмов на планете, а также сказывается на тех процессах, происходящих в Солнечной системе, которые сильно зависят от межпланетных взаимодействий.
С помощью геологических данных можно изучать развитие и более коротких астрономических циклов, оказывающих заметное влияние на климат Земли. Например, по годичным кольцам на окаменелых деревьях палеозойской эры ученые подтвердили существование 11-летнего цикла солнечной активности 290 миллионов лет назад. А изучение состава ледяных кернов и раковин фораминифер помогло геологам уточнить причину увеличения продолжительности ледниковых эпох на Земле в среднем плейстоцене около миллиона лет назад.
Александр Дубов
Как в 2009 году замедлилось ядро Земли и почему мы узнали об этом в 2023-м
Мы добрались до поверхности другого небесного тела полвека назад, а вглубь своей планеты до сих пор не ушли дальше 13-го километра — и вряд ли еще углубимся в ближайшие годы. Но кое-какие сигналы снизу до нас доходят. В прошлом месяце китайские ученые сообщили, что 11 лет назад земное ядро замедлило свое вращение. Редакция N + 1 попросила геофизика Сергея Тихоцкого, директора Института физики Земли имени Шмидта, рассказать, откуда мы получаем сведения о процессах в центре Земли и какой поворот принимает геофизическая история нашей планеты в свете новых данных. Около 90 процентов всей информации о земных недрах, которой мы располагаем сегодня, получены благодаря сети сейсмостанций. Конечно, ученые пытались забраться глубже — помимо Кольской сверхглубокой скважины, в 1960-е годы, например, был запущен проект Mohole, инициаторы которого рассчитывали пробурить относительно тонкую океаническую кору (в океане толщина литосферы около 5-10 километров против 30 километров на материках) и добраться до верхней границы мантии. Но он не достиг своей цели и был свернут — из-за перерасхода средств и технических сложностей, связанных с бурением скважин в море. К моменту закрытия проекта удалось пробурить несколько тестовых скважин, из которых самая глубокая была лишь 183 метра. Он и другие подобные проекты получили много данных о геохимических характеристиках, о тепловых потоках из недр — но только землетрясения, а точнее порождаемые ими сейсмические волны, могут осветить нам внутренность земли. В прошлом на роль такого фонаря претендовали ядерные взрывы: Советский Союз взорвал десятки ядерных устройств именно для геофизических исследований (читайте о них в нашем материале «Бомба в хозяйстве»), но вряд ли кто-то будет отменять мораторий на ядерные испытания ради геофизиков. Как слышно Слушать землю это примерно то же самое, что и смотреть на звезды. Звезды испускают свет, который поглощается, преломляется, отражается и рассеивается по дороге к Земле. Точно так же сейсмические волны замедляются, ускоряются, преломляются, отражаются в недрах Земли — и если у вас достаточно наблюдательных пунктов в разных точках планеты, вы можете что-то понять о том, что же там вдали происходит. В 1909 году сейсмолог Андрей Мохоровичич обнаружил странный эффект: на станции в 200 и больше километрах от эпицентра сигнал от землетрясения приходил несколько раньше, чем должен был. Словно после этой отметки сейсмические волны ускорялись. Это, собственно, и происходило: сейсмические волны, распространяясь под землей на определенной глубине, попадали в мантию. Там плотность вещества выше, оттого и скорость волн возрастала. Так была открыта поверхность Мохоровичича — граница между земной корой и мантией, которая проходит на глубине от 20 (под океанами) до 90 километров. А через несколько лет американский сейсмолог Бено Гутенберг выяснил, что у мантии есть и нижняя граница — на глубине около 2,9 тысячи километров. Дальше начинается уже ядро. Причем ядро оказалось жидким. Доказательство жидкости Волны, которые распространяются в толще твердого вещества, могут быть продольными или поперечными. Продольные волны или P-волны (pressure wave) — это волны сжатия-разрежения, колебаний давления. Частицы вещества, в котором распространяется такая волна, движутся вдоль направления распространения такой волны. Так, например, распространяется звук — мы слышим благодаря сжатию и разрежению воздуха, то есть колебаниям, которые действуют на барабанные перепонки. И если сейсмические P-волны добираются до поверхности (и попадают в слышимый диапазон частот), мы можем услышать звук землетрясения. Продольные волны самые быстрые и распространяется во всех средах — и в твердых, и в жидких. А поперечные волны — S-волны (shear wave, сдвиговые волны) — связаны не со сжатием вещества, а с его упругой деформацией. В отличие от продольных, здесь колебания частиц направлены не вдоль, а перпендикулярно к направлению волны. Если мы посмотрим на кубик вещества, сквозь который проходит S-волна, мы увидим, что он периодически меняет свою форму, сохраняя объем. Для этого нужно, чтобы среда могла удерживать форму — поэтому ни в жидкостях, ни в газах поперечные волны не распространяются. Всякий раз, когда волна доходит до границы сред, как например между ядром и мантией, P-волна расщепляется и возникает две новых: одна продольная, другая поперечная (кроме ситуации, когда она двигается строго перпендикулярно границе). Но если среда, по которой волна собирается бежать дальше, не твердая, то поперечной волны не возникает. А когда эхо оригинальной P-волны достигает поверхности на другом конце земного шара и оставляет «автограф» на сейсмограмме, мы видим, через какие превращения она прошла, и по ним можем восстановить характеристики среды, через которую она двигалась. Для измерений, помимо пространственных параметров, важно еще и время. Сейсмологи фиксируют, как быстро приходят волны, прошедшие разными маршрутами, как запаздывают разные типы волн относительно друг друга. В 1913 году Гутенберг обнаружил, что на глубине между отметкой 2900 и 5150 километров не проходят поперечные волны, их следов нет ни на одной сейсмограмме. Из этого следует, что вещество на этой глубине — жидкое. Минорный диссонанс Когда стало понятно, что твердая часть ядра отделена от мантии и коры, можно было допустить, что его вращение не синхронно со вращением всей планеты. Что внутреннее ядро может вращаться с собственной скоростью, как яблоко в кастрюле с водой. Более того, целый ряд косвенных признаков указывали на дифференциальное вращение мантии и внутреннего ядра. Первый из этих признаков — это колебания скорости вращения Земли, вариации продолжительности суток. Это очень небольшие вариации, они не превышают миллисекунд, однако они систематически фиксируются астрономами с середины XIX века, а эпизодические измерения были еще в XVII веке (о них подробнее — в материале «Наши дни становятся короче»). График этих колебаний — многосоставный, в нем есть колебания сезонные, годовые, пятилетние и колебания с циклом в несколько десятилетий. Сезонные вариации легко объяснялись сезонными же изменениями в циркуляции атмосферы. Более долгопериодические связали с Эль-Ниньо и другими колебательными процессами в океане и атмосфере с периодом в 5-10 лет. Но долгопериодические колебания с периодом в 70-80 лет оставались необъяснимыми. Быстрее всего за историю наблюдений Земля вращалась в 1870-1880 годах, когда продолжительность суток была примерно на 3 миллисекунды меньше. А в 1920-х годах Земля наоборот, замедлялась: сутки были на 4 миллисекунды длиннее, чем сейчас. Поведение вращающегося тела всегда подчиняется закону сохранения углового момента. Это используют, например, фигуристы, когда прижимают локти к телу во время вращения — и таким образом начинают крутиться быстрее. У Земли, конечно, нет рук, чтобы столь же значительно перераспределять массу и влиять на свой момент инерции. Но если ее поверхность начала двигаться быстрее, значит, что-то другое начало вращаться медленнее. Можно было предположить, что такими руками планете служат полюса. Расстояние от центра планеты до полюсов примерно на 21 километр меньше, чем от центра до экватора. И если бы Земля еще сильнее сплюснулась (то есть увеличила эту разницу), она стала бы вращаться еще медленнее. Но нет, ученые не наблюдают заметных изменений этого параметра: эксцентриситет планеты никуда не меняется. И если дело не во влиянии атмосферы (колебания ее состояния происходят гораздо чаще), и не в изменении формы планеты, то искать причину колебаний остается только в недрах. Процессы в мантии можно было исключить сразу же — она состоит из вязкого вещества с плотностью, сопоставимой с плотностью стали, и изменения в ней занимают не десятки, а миллионы лет. А значит это что-то, связанное с ядром. И, конечно, первым кандидатом было дифференциальное вращение ядра и мантии. Полифония недр Но для того, чтобы всерьез говорить о разности скоростей вращения внутреннего ядра и мантии, косвенных свидетельств и рассуждений об их природе было мало. Нужны были доказательства — сейсмические. Одна из первых работ, в которой они были приведены, была опубликована в 1996 году. Ее авторы, Сяодун Сун (Xiaodong Song) и Пол Ричардс (Paul Richards) из университета Колумбии, пытались определить, не меняется ли со временем скорость прохождения сейсмических волн по одному маршруту, проходящему через внешнее и внутреннее ядро. Для этого нужно, чтобы сейсмостанция ловила волны с противоположного края планеты — которые по пути бы проходили и внешнее ядро, и внутреннее. Подходящей мишенью для этого оказались ядерные испытания — потому что координаты точки, где происходит ядерный взрыв, известны очень точно. Ученые изучили старые бумажные сейсмограммы с сейсмостанции в Антарктиде и посмотрели, менялась ли за все время наблюдений скорость сейсмических волн от ядерных испытаний СССР на Новой Земле (1955–1990 годы, 132 взрыва, из них 42 подземных). И действительно, на старых бумажных лентах было видно, что волны от ядерных взрывов за десять лет ускорялись примерно на 0,2 секунды. Тогда ученые добавили к ядерным сейсмограммам данные землетрясений: в районе Южных Сандвичевых островов, которые фиксировали сейсмостанции на Аляске, в Канаде и в Южной Америке, а также землетрясения в Чили, волны которых выходят на поверхность в Казахстане и на Курилах. И снова обнаружили заметное расхождение. Ученые на тот момент уже знали, что внутреннее ядро Земли анизотропно — то есть его структура такова, что сейсмические волны будут проходить через него в разных направлениях за разное время. Об этом говорили измерения 1980-х годов, которые показывали, что волны, которые двигались вдоль оси вращения планеты, распространялись быстрее остальных. Поэтому ускорение сейсмических волн, прошедших по тому же маршруту спустя десятилетие, могло означать только то, что свойства вещества на этом маршруте изменились. Иначе говоря, внутреннее ядро провернулось относительно мантии и литосферы, и сейсмические волны прошли, через другую его зону. Сяодун Сун и Пол Ричардс пришли к выводу, что внутреннее ядро вращается быстрее, чем кора и мантия, примерно на 1 градус в год. Контрапункт Теперь тот же Сяодун Сун, перебравшийся в университет Пекина, и его коллега И Ян (Yi Yang) проанализировали данные наблюдений с 1964 по 2021 год, чтобы уточнить, как менялась эта разница в скорости. Метод был тот же, что и в 1996-м: ученые взяли и сравнили между собой все записи волновых форм землетрясений из одного очага, за все годы наблюдений на одних и тех же сейсмостанциях. Конечно, во всех случаях нужно было ввести поправку на мантию и на механизмы очага — для этого использовались те волны, которые идут почти по той же траектории, но не попадают во внутреннее ядро. Сяодун Сун и И Ян сравнивали ряды данных, собранных сейсмостанциями на Аляске и в других регионах, используя интегральный показатель сходства. Они обнаружили, что если с конца 1970-х до 2009 года форма волн, проходивших через внутреннее ядро, менялась от года к году, то после 2009 года эта разница исчезает — то есть внутреннее ядро и мантия теперь вращаются, по-видимому, синхронно. Возможно, эта аномалия периодична — и мы имеем дело с колебательным процессом, который занимает 60-70 лет. То есть в период с конца 1970 годов до конца 2000-х ядро вращалось то быстрее мантии, то медленнее, а после 2009 года они синхронизировались. Причем наиболее старые данные, имеющиеся в нашем распоряжении, относятся к периоду 60-х — 70-х годов XX века — и их анализ позволяет предположить, что тогда вращение внутреннего ядра и мантии тоже было синхронным. То есть ничего принципиально нового прямо сейчас не происходит: напротив, китайским ученым удалось показать, что изменения в дифференциальном вращении внутреннего ядра и мантии земли происходили где-то около 40 лет. Причем длительность этой аномалии укладывается в цикл колебаний продолжительности дня — он тоже занимает 60-70 лет. То есть ядро у нас постепенно ускорялось, а поверхность планеты замедлялась, и полный момент оставался неизменным. Возможно, через некоторое время ядро начнет отставать от мантии или наоборот, начнет ускоряться — для этого нужно проследить весь цикл.