Атом кислорода на медной иголке увеличил точность атомно-силового микроскопа

Изображение молекул фуллерена на медной подложке, полученное с помощью предложенного метода. В правом верхнем углу представлено схематическое изображение атомной структуры кончика сканирующей иголки
H. Mönig et al./ Nature Nanotechnology, 2018
Химики увеличили точность измерения химической структуры органических молекул с помощью атомно-силовой микроскопии, доведя ее до сотых долей нанометра. Добиться этого удалось за счет присоединения к кончику сканирующей медной иголки микроскопа единственного атома кислорода. Оказалось, что с помощью такого зонда можно не только определять длины химических связей в органических соединениях, но и измерять силы, возникающие между отдельными молекулами, пишут ученые в статье Nature Nanotecnology.
Количественное изучение химической структуры органических молекул с помощью микроскопических методов — довольно непростая задача. Одним из наиболее эффективных инструментов для этого на сегодняшний день служит атомно-силовая микроскопия, которая не только дает возможность изучать внутреннюю химическую структуру молекул, но и позволяет измерять силы, возникающие в сложных химических системах. Для этого в микроскопе используется специальный зонд — иголка, которая двигается вдоль изучаемой поверхности и измеряет силу, с которой действует на нее исследуемое вещество. Обычно эта иголка сделана из металла, и чтобы проведению измерений не мешали никакие побочные взаимодействия и возможные химические реакции, к ее кончику приходится присоединять дополнительную инертную молекулу (обычно это или ксенон, или угарный газ). Тем не менее, из-за слабой связи между инертной молекулой и металлом даже такой способ не позволяет проводить достаточно точные измерения и приводит к возникновению погрешностей.
Группа химиков под руководством Гарри Мёнига (Harry Mönig) из Мюнстерского университета предложила исследовать химическую структуру органических соединений с помощью медной иголки, к острию которой присоединен единственный атом кислорода. В отличие от молекул ксенона или угарного газа, атом кислорода связан с остальным материалом иголки прочной ковалентной связью, и при этом позволяет подавить возможное химическое взаимодействие между медью и исследуемым веществом.
С помощью такого зонда химики изучили структуру нескольких органических соединений, нанесенных на различные металлические подложки: в частности, структуры фуллерена C60, бис-парапиридилацетилена и перилен-тетракарбоксильного ангидрида. Ученые отмечают, что использованный ими зонд позволил заметно повысить разрешение метода: например, длины углерод-углеродных связей в молекуле фуллерена удалось измерить с точностью до 0,012 нанометра. При этом численный расчет методом теории функционала плотности подтвердил, что эти измерения лишены систематической ошибки, которая была свойственна аналогичным измерениям с использованием зондов предыдущего поколения.
Кроме того, с помощью исследования монослоев из ароматических молекул, нанесенных на металлические подложки, авторы работы измерили силы, действующие между отдельными молекулами, а также, например, изучили структуру трехцентровой связи, которая может возникать при взаимодействии между двумя атомами азота и атомом золота.
Атомно-силовая микроскопия — не единственный метод, который можно использовать для достаточно точного измерения сил, возникающих между отдельными атомами или внутри кристаллических структур. Например, недавно австралийские физики разработали метод измерения сил, действующих на отдельные атомы и ионы, основанный на определении смещения атома в лазерной ловушке. Точность этого метода составила несколько сотых долей аттоньютона. Другая группа ученых измерила силы Ван-дер-Ваальса, возникающие между отдельными слоями в слоистом кристалле, с помощью сверхточного устройства, позволяющего растягивать материал.
Александр Дубов