Биологи объяснили механические свойства яичной скорлупы

D. Athanasiadou et al./ Science Advances, 2018
Биологи изучили наноструктуру и химический состав скорлупы куриных яиц и показали, как они влияют на ее механические свойства. Оказалось, что из-за наличия неоднородной системы наногранул в скорлупе, которая определяется концентрацией белка остеопонтина и меняется в процессе инкубации, скорлупу пробить изнутри легче, чем снаружи, в тот момент, когда птенец уже готов к вылуплению, пишут ученые в Science Advances.
Известно, что яичная скорлупа по мере взросления находящегося внутри нее эмбриона постепенно становится менее прочной, а также то, что пробить изнутри ее немного проще, чем снаружи. Это помогает скорлупе защищать развивающийся эмбрион от внешних опасностей, в то же время позволяя птенцу относительно легко вылупиться из яйца. Основной компонент скорлупы (около 95 процентов) — это неорганическая карбонатная фаза (как правило, кальцит), но помимо нее в скорлупе также присутствуют органические белковые элементы (в первую очередь на основе остеопонтина) с неоднородной структурой. Считается, что именно эта неоднородность определяет механические свойства скорлупы, однако точная связь состава оболочки, ее наноструктуры и механических свойств до настоящего дня оставалась неизученной.
Группа биологов из Канады, США, Германии и Испании под руководством Марка Макки (Marc D. McKee) из Университета Макгилл изучила, как именно в яичной скорлупе распределены органические и неорганические компоненты, какую структуру они образуют и как это отражается на механических свойствах оболочки. Для этого авторы работы исследовали скорлупу яйца домашней курицы (Gallus gallus) с помощью атомно-силовой и электронной микроскопии, а также рентгеновской томографии.
Оказалось, что определяет механические свойства скорлупы белковый компонент остепонтин. Он неравномерно распределен по скорлупе, что приводит к формированию в ней наногранул. Ученые обнаружили, что всего по толщине скорлупы можно выделить, как минимум, пять слоев с различным средним размером наноструктур — от 30 до 75 нанометров, и этот размер увеличивается от внешних слоев оболочки к внутренним.
Кроме того, ученые обнаружили, что в процессе развития эмбриона при инкубации размер гранул в скорлупе также меняется. За счет постепенного увеличения концентрации остеопонтина гранулы становятся все меньше, делая скорлупу менее прочной, так что к моменту вылупления птенец уже может самостоятельно пробить ее клювом изнутри. При этом, помимо механических свойств, остеопонтин меняет и растворимость кальцита в физиологической среде внутри яйца, таким образом минерал в процессе развития эмбриона становится источником кальция для скелета.
По словам ученых, аналогичная структура скорлупы с наногранулами различного размера (от 50 до 100 нанометров) характерна не только для куриных яиц, но и для яиц других птиц, в частности гуся (Anser anser) и цесарки (Numidia meleagris).
Авторы работы показали, что остеопонтин можно использовать и для управления механическими свойствами искусственных неорганических материалов на основе карбонатных минералов. Оказалось, что изменяя концентрацию остеопонтина в материале, можно управлять размером нем гранул: так, если чистый минерал кристаллизуется в единственную монокристаллическую фазу, то при увеличении концентрации образуется структура, содержащая микрогранулы разного размера.
Александр Дубов