Американским физикам впервые удалось экспериментально изучить электронную структуру металла, в котором отдельные слои имеют структуру кагоме — решетки, состоящей из треугольников и шестиугольников. Для полученного соединения на основе железа и олова характерно наличие в электронной структуре дираковских конусов, разделенных запрещенной зоной. При этом за счет магнитных свойств металла в нем можно даже при комнатной температуре наблюдать аномальный эффект Холла, когда поперечное электрическое поле при протекании электрического тока появляется даже при отсутствии внешнего магнитного поля, пишут ученые в Nature.
Одно из отличительных свойств графена — необычная структура его энергетических зон: энергия электронов в графене линейно связана с их импульсом, что приводит к образованию в фазовом пространстве дираковских конусов. К такой необычной форме электронных зон (вместо стандартных параболических) приводит взаимодействие электронов в двумерной решетке с гексагональной симметрией.
Похожие необычные энергетические зоны могут формироваться не только в чисто двумерных кристаллах, но и в квазидвумерных системах — трехмерных кристаллах, в которых отдельные слои атомов выстраиваются в двумерные решетки. Один из примеров подобных материалов — кристаллы со структурой кагоме. Отдельные слои в такой решетке расположены по узлам треугольно-гексагональной решетки, что, согласно теоретическому анализу, может приводить к формированию электронной структуры с дираковскими конусами, аналогичной графену. Тем не менее, экспериментально подобная электронная структура в кристаллах со структурой кагоме не наблюдалась.
Американские физики под руководством Цзюньвэя Лю (Junwei Liu) из Массачусетского технологического института впервые экспериментально показали, что в металле с треугольно-гексагональной структурой отдельных слоев действительно происходит образование подобной электронной структуры. Для этого ученые синтезировали металл Fe3Sn2 со слоистой гексагональной структурой, состоящий из атомов железа и олова. В этом кристалле двойные двумерные слои со структурой кагоме состава Fe3Sn зажаты между слоями станена — гексагонального двумерного олова.
Помимо треугольно-гексагональной структуры отдельных слоев этот материал примечателен наличием магнитной упорядоченности, которая делает его мягким ферромагнетиком. Ученые провели комплексный анализ полученного материала с помощью микроскопических методов, измерения его магнитных свойств и электронной структуры с помощью метода фотоэлектронной спектроскопии с угловым разрешением.
Оказалось, что, как и было предсказано теоретически, из-за треугольно-гексагональной кристаллической структуры слоев d-электроны в зонной структуре материала образуют выраженные дираковские конусы. Однако спин-орбитальное взаимодействие и магнитное расщепление энергетических уровней приводит к тому, что они расходятся вокруг уровня Ферми и появляется выраженная запрещенная зона шириной около 30 миллиэлектронвольт.
За счет того, что сам металл является ферромагнитным и внутри него формируется магнитное поле, такая электронная структура приводит к возникновению в материале аномального эффекта Холла: при протекании электрического тока образуется электрическое поле, направленное поперек этого тока. Для обычного эффекта Холла необходимо внешнее магнитное поле, однако в магнитном материале он появляется за счет внутренней намагниченности. Ученые отмечают, что холловская проводимость сохраняется в материале и при повышении температуры выше комнатной.
По словам авторов работы, им впервые удалось наблюдать подобный аномальный эффект Холла в магнитных материалах при комнатной температуре. В ближайшем будущем ученые надеются получить настоящие двумерные металлы со структурой кагоме, а не только их аналоги в виде слоев в трехмерном кристалле.
Возможность перехода от конической структуры электронных зон с безмассовых носителей заряда к расщеплению энергетической структуры с появлением запрещенной зоны используется, например, в топологических изоляторах для осуществления фазовых переходов между состояниями с разными типами топологической защиты.
Александр Дубов
Разбираетесь ли вы в вычислениях, использующих принципы квантовой механики?
Квантовые вычисления могут подарить нам невиданные возможности — например, значительно ускорить машинное обучение или помочь в решении сложных вычислительных проблем. Но достаточно ли вы знаете, чтобы понимать, на что они способны на самом деле? Вместе с Университетом МИСИС мы подготовили тест, который поможет вам разобраться в принципах, лежащих в основе квантовых вычислений.