Исследователи из США, Испании и Нидерландов зафиксировали переход между различными жидкими фазами переохлажденной воды с небольшой примесью трифторацетата гидразиния. Оказалось, что этот переход очень похож на переход между двумя фазами чистой аморфной жидкой воды. Чтобы объяснить это совпадение, ученые численно смоделировали обе жидкости и показали, что их структура на молекулярном уровне практически одинакова. Статья опубликована в Science.
В обычной жизни вода замерзает при нуле градусов Цельсия — говоря более строго, она испытывает фазовый переход первого рода, в течение которого кристаллизуется и переходит из жидкой фазы (собственно, вода) в твердую (лед). На всякий случай уточним, что в «обычной жизни» давление близко к одной атмосфере, а вода содержит множество растворенных примесей. Если же эти условия нарушаются, воду можно переохладить до гораздо более низкой температуры, избегая кристаллизации и образования льда. В частности, совсем недавно ученые впервые получили переохлажденную воду при −42,55 градуса Цельсия.
Более того, численные расчеты и теоретические исследования указывают на то, что в сильно переохлажденной воде может существовать не одна, а сразу несколько различных фаз — так называемая вода низкой плотности (low-density amorphous water, LDA) и вода высокой плотности (high-density amorphous water, HDA). Отличия между ними объясняются тем, что водородные связи по-разному выстраиваются между молекулами жидкости, что приводит к изменению ее плотности и удельной теплоемкости. Следовательно, при определенных условиях переохлажденная вода должна испытывать фазовый переход между двумя жидкими фазами. К сожалению, экспериментально наблюдать такой переход очень сложно, поскольку переохлажденная вода слишком легко кристаллизуется и «проскакивает» вторую жидкую фазу. Пока что физикам удалось получить LDA и HDA по отдельности, но увидеть, как вода переходит между ними, ученым не удавалось.
Группа ученых под руководством Сандера Вутерсена (Sander Woutersen) из Амстердамского университета и Остина Энгелла (Austen Angell) из Университета штата Аризона добавила к воде немного соли, чтобы помешать ее кристаллизации и облегчить наблюдение фазового перехода. В качестве такой добавки исследователи использовали трифторацетат гидразиния (N2H5TFA), разбавляя его в небольших количествах в дистиллированной воде, так что мольная доля жидкости составляла от 50 до 84 процентов. Несмотря добавление соли, поведение воды существенно не изменилось, и ученым удалось увидеть в ней образование фаз, аналогичных LDA и HDA, а также зафиксировать фазовый переход между ними.
Для удобства исследователи помещали небольшое количество водного раствора (около одного микролитра) между двумя пластинками из фторида кальция — это позволило определить удельную теплоемкость жидкости при низких температурах, не боясь вызвать в ней образование льда. Кроме того, ученые добавили в жидкость немного тяжелой воды (в пропорции примерно 1 к 33) — ее термодинамика не отличается от обычной воды, но сила водородных связей в ней несколько другая. Затем физики начали охлаждать образец, параллельно измеряя поглощение раствором инфракрасного излучения. Это позволило заметить момент перехода между фазами — при определенной температуре водородные связи в растворе стали перестраиваться, и спектр поглощения раствора изменился.
В результате ученые выяснили, что в жидкости действительно наблюдается фазовый переход при температуре около −83 градусов Цельсия — ее теплоемкость в этот момент резко увеличивалась, после чего так же резко падала. Другими словами, при приближении к температуре перехода во время охлаждения жидкости интенсивность поглощения инфракрасного излучения резко возрастала, а во время нагревания — наоборот, резко падала. При нагревании переход наступал при немного большей температуре, причем разница между температурами была тем выше, чем быстрее менялась температура жидкости. Можно сказать, что в системе возникал гистерезис, то есть она реагировала на изменение внешних условий с небольшим запозданием. При дальнейшем увеличении температуры раствор начинал кристаллизоваться, и это выражалось в еще большем росте доли поглощенного излучения.
Затем ученые разделили вклады каждой из фаз, возникающих в ходе эксперимента, в спектр поглощения, и сравнили их со спектрами поглощения LDA и HDA, измеренных в предыдущих экспериментах. Оказалось, что качественно эти картины практически не отличаются, хотя фазовый переход в растворе воды происходит при гораздо более высокой температуре.
Чтобы объяснить это совпадение, ученые построили с помощью метода молекулярной динамики (MD) и теории функционала плотности (DFT) распределение электронной плотности вокруг молекул раствора и чистой воды, а также рассчитали длину водородных связей, возникающих в этих жидкостях. Оказалось, что на молекулярном уровне жидкости очень похожи — следовательно, их термодинамика должна слабо отличаться, что и было зафиксировано в эксперименте.
В прошлом месяце мы уже писали про метастабильную жидкую фазу воды, возникающую при температуре от −135 до −110 градусов Цельсия и давлении от 0,4 до 0,7 паскаля — тогда физикам из Института Карнеги удалось получить такую фазу с помощью быстрой декомпрессии льда. Кроме того, обычный лед тоже станет напоминать вязкую жидкость, если облучить его ультрафиолетом и сильно охладить.
Дмитрий Трунин
При каждом нажатии он меняет структуру, не забывая о предыдущих изменениях
Физики создали механический метаматериал с эффектом памяти, который можно использовать как примитивный счетчик до десяти. Этот материал представляет собой массив из десяти деформируемых ячеек, каждая из которых может находиться в одном из двух состояний, меняющихся при нажатии. При этом предыдущих изменений материал не забывает. В будущем счетчики с подобной конструкцией могут оказаться полезными для мягкой робототехники и умных сенсоров, пишут ученые в Physical Review Letters. Свойства метаматериалов определяются в первую очередь не химическим строением, а геометрической микроструктурой (например, расположением слоев различных веществ или периодичностью атомной решетки) и для них характерны аномальные значения различных физических параметров. Например, если растягивать в продольном направлении ауксетики, обладающие отрицательным значения коэффициента Пуассона, то в перпендикулярном направлении они расширяются (в то время как обычные материалы сжимаются). Ученые работают и над метаматериалами, обладающими памятью: они запоминают воздействие и реагируют на него сменой физических свойств. Например, если нагреть полимер с памятью формы, он вернет исходную (до деформации) форму. Однако такие материалы запоминают лишь начальное состояние, запомнить несколько последовательно меняющихся состояний им не под силу. Физики Мартин ван Хеке (Martin van Hecke) и Леннард Квакернак (Lennard Kwakernaak) из Лейденского университета разработали метаматериал, у которого память о предыдущих деформациях не сбрасывается. Храня информацию о предыдущих воздействиях, такой материал фактически способен считать: он запоминает каждое нажатие, последовательно меняя свою структуру. Ученые сделали материал на 3D-принтере из стоматологической силиконовой смеси для слепков. Он состоит из отдельных ячеек, каждая из которых включает в себя две балки: одну тонкую и одну толстую. Тонкая балка может изгибаться либо влево, либо вправо. Толстая балка служит перегородкой, отделяя ячейки материала друг от друга. Значение критической деформации для толстой и тонкой балок различны, поэтому одного нажатия достаточно для сгибания тонкой балки и частичной деформации толстой. Наличие толстой балки также не дает деформироваться тонкой балке в соседней ячейке. Материал считает следующим образом. В начальном состоянии {000...0} все тонкие балки изогнуты влево. При каждом изменении направления изгиба тонкой балки 0 меняется на 1. Превышая первым нажатием критическую деформацию тонкой балки, систему выводят в состояние {100...0}. После каждого следующего нажатия крайняя слева балка изгибается в правую сторону. Толстая балка при этом не деформируется, но за счет конструкции сгибает следующую тонкую. То есть система копирует состояние изогнутой вправо тонкой балки (1) с каждым нажатием на одну ячейку правее. В терминах нулей и единиц, подсчет можно записать как {000...0} → {100...0} → {110...0}→··· → {111...1}. До скольки может досчитать материал, зависит от числа ячеек и начального состояния системы, память метаматериала сохраняется до конца подсчета. По словам авторов работы, такой метаматериал с эффектом памяти фактически представляет собой простейший компьютер, который можно запрограммировать на счет с любого начального числа. Его работу ученые проверили, фиксируя значения критических деформаций и начиная счет с различных начальных чисел. Материаловеды отмечают, что такой счетчик из метаматериала можно изготовить и из других веществ, например каучука или полиуретана. В будущем из аналогичных ячеек ученые планируют собирать и двумерные массивы, на которых можно будет проводить более сложные вычислительные операции Метаматериалы хороши не только в счете: они помогают решать уравнения со скоростью света, а еще их можно превратить в непрерывные кристаллы времени.