Около 94 миллионов лет назад произошло второе аноксическое событие — кислородное обеднение океана, из-за которого полностью вымерли ихтиозавры и плиозавры. Теперь ученые выяснили, что оно происходило не в один этап, как считалось ранее, а в два. Статья в Proceedings of the National Academy of Sciences рассказывает о том, что между двумя этапами понижения концентрации кислорода был период около 100 тысяч лет, когда содержание кислорода в океане и глобальный цикл углерода почти полностью восстановились.
В меловой период с мировым океаном произошло два аноксических (бескислородных) события, в процессе которых океан лишался значительной части кислорода. Первое из них — аптское аноксическое событие (oceanic anoxic event 1), оно произошло около 120 миллионов лет назад и продолжалось от 1 до 1,3 миллиона лет, второе (OAE 2) — произошло, по разным оценкам, 91 или 94 миллиона лет назад, и было чуть короче — около 800 тысяч лет. В результате аноксии океана происходило значительное понижение концентрации кислорода большого числа глубоководных областей, что делало воду непригодной для жизни организмов, которые используют кислород для своей жизнедеятельности, и соответственно, приводило к массовому вымиранию морских животных. Большинство ученых связывает понижение концентрации кислорода с процессами глобального потепления, увеличением концентрации углекислого газа в атмосфере и активацией вулканизма на планете.
Чтобы уточнить временные границы и последовательность геологических явлений во время второго аноксического события, геологи из Новой Зеландии и Великобритании под руководством Мэттью Кларксона (Matthew O. Clarkson) из Университета Отаго проанализировали изотопный состав урана в океанических и платформенных осадочных породах. Ученые исследовали карбонатные минералы, собранные в Средиземном и Северном морях и относящиеся к исследованному временному интервалу. По полученным данным о соотношении изотопов урана-235 и урана-238 (подкрепленным вспомогательными данными об изотопном составе углерода, кислорода и лития) авторы работы оценили динамику уменьшения концентрации кислорода вблизи океанского дна. Информативность такого анализа связана с тем, что растворимый в воде уран-IV очень чувствителен к окислительно-восстановительным свойствам среды, и в обедненной кислородом воде уран начинает восстанавливаться, выпадая в осадок. При этом уран-238 делает это значительно охотнее, так что его концентрация увеличивается в осадке и падает — в воде.
Ученые обнаружили, что в интересующем их интервале в осадке содержание изотопа урана-238 увеличивалось, но не один раз, а сразу два. За временной интервал около 100 тысяч лет между этими падениями уровень кислорода практически полностью восстановился. Кроме того, геологам удалось подтвердить, что, помимо понижения концентрации кислорода, также произошло увеличение содержания в океане концентрации сероводорода. Полученные геохимические данные ученые сопоставили с результатами биогеохимического компьютерного моделирования, и связали между собой изменения изотопного содержания урана с возможной динамикой в глобальных циклах углерода и фосфора. На основании этих моделей авторы работы определили, что во время обеих стадий аноксического события росла концентрация углекислого газа в атмосфере и увеличивалась температура.
Геологи отмечают, что количественный анализ концентраций кислорода в океанской воде и восстановление точных дат аноксических событий все еще остается довольно заметной проблемой из-за того, что различные модели предполагают различные механизмы этого процесса. В частности, не до конца понятно, насколько содержание кислорода в воде вблизи океанского дна соответствовало воде в менее глубоких зонах океана. Тем не менее, по полученным данным можно ограничить концентрации кислорода и углекислого газа в воде в разные периоды всего события.
Массовое вымирание морских животных многие ученые связывают изменением химического состава океанской воды и глобальным циклом углерода на планете. Например, некоторые геохимические модели предсказывают, что следующее массовое вымирание морских животных может начаться уже в начале XXII века. При этом наибольшей опасности при этом подвергаются животные с наибольшей массой тела.
Александр Дубов
Ученые предполагают, что за подобные катастрофы ответственна постоянная мерзлота на высочайших горных пиках
Геологи обнаружили в Гималаях следы гигантского обрушения, которое уничтожило одну из вершин-восьмитысячников в составе крупного массива Аннапурна. Оползень, сместивший приблизительно 23,5 кубических километра породы, произошел около 1190 года. По мнению ученых, подобные масштабные, но редкие обвалы характеризуют режим эрозии горных систем с большой крутизной склонов и высокими постоянномерзлыми пиками, и показывают, как может протекать долгосрочная топографическая эволюция высокогорных регионов. Об исследовании сообщает статья в журнале Nature. Гималаи ― самая высокая и одна из наиболее активных горных систем на Земле. Однако, несмотря на многочисленные исследования, у ученых пока нет единого мнения о том, как происходит ее развитие с точки зрения соотношения между процессами тектонического поднятия и эрозии. В частности, неясен режим разрушения самых высоких гималайских пиков. Согласно одной из точек зрения, высота гор при любой скорости тектонического подъема зависит главным образом от того, где пролегает граница питания покрывающего их ледника. Предполагается, что эффективное выветривание, которое происходит ниже этой границы, заставляет постепенно отступать вершины ледниковых цирков примерно с той же скоростью, с какой сползающий ледник углубляет дно долины. При этом вершины горной цепи постоянно оказываются на высоте около 1,5 километра над уровнем границы питания ледника. Однако такой механизм действует далеко не всегда. Так, он неприменим при описании Гималаев, где пики-восьмитысячники поднимаются над границей питания на высоту до трех километров: скорость эрозии здесь оказывается ниже, так как на больших высотах не работают циклы таяния и замерзания. Ученые предположили, что в таких условиях предел роста горных пиков обусловлен лишь механической прочностью массива, и изменение их крутизны и высоты происходит за счет оползней. К сожалению, до сих пор отсутствует систематический каталог этих явлений, способных вызвать бедствия из-за перекрытия долин гималайских рек. Поэтому трудно надежно оценить их вклад в многолетнюю эволюцию высокогорных территорий. Сейсмические наблюдения показывают, что районах, расположенных выше трехкилометровой отметки, происходит меньшей оползней, чем в более низких местностях. Это говорит о том, что либо на большой высоте действует иной механизм эрозии, либо частотно-размерное распределение оползней здесь перекошено в сторону очень крупных, но сравнительно редких событий. Свидетельство одной из подобных катастроф обнаружили Жером Лаве (Jérôme Lavé) из Университета Лотарингии и его коллеги из Непала, США и Франции. Гигантский оползень был идентифицирован исследователями в пределах Аннапурны ― одного из высочайших массивов, расположенного в центральной части Непала и принадлежащего к Главному Гималайскому хребту. Следы оползня локализуются в ледниковом цирке Сабче ― глубокой впадине поперечником около 8,5 километра у юго-западного склона пика Аннапурна IV. Цирк Сабче окаймлен чрезвычайно крутыми скалами, а дно его заполнено осадками, которые ранее были описаны как моренные или озерно-ледниковые отложения (труднодоступность района долгое время препятствовала их точному полевому описанию). Лаве и его коллеги установили, что осадки представляют собой брекчию ― породу, образованную сцементированными неокатанными обломками. Брекчия из цирка Сабче состоит из сильно фрагментированных (сантиметрового и дециметрового размера) обломков известняка в пылевидной, богатой карбонатом матрице. Мощность этих отложений превышает 400 метров, а в отдельных местах достигает километра. Цирк оказался заполнен брекчией относительно непрерывно, без каких-либо несогласий, но в ее толще ученые обнаружили внутренние зоны сдвига. Все эти особенности позволили исследователям заключить, что отложения в цирке Сабче образовались в результате единой и чрезвычайно масштабной оползневой обломочной лавины. Объем заполнившего впадину материала оценивается в 23,5 +4/−3 кубических километра. Следы этой каменной лавины исследователи нашли и за пределами цирка, в верхней части долины реки Сети ― сюда, по подсчетам, вышло около 3,5 кубических километра обломков и пыли. С учетом средней пористости брекчии 15 ± 5 процентов общий объем обрушившейся породы ученые оценили в 23,5 +3,5/−3 кубических километра, и это был крупнейший оползень, описанный в Гималаях. Измерение содержания космогенного хлора-36 (36Cl) в образцах, отобранных на поверхностных участках слоя брекчии, позволило получить дату образования этой поверхности ― 1196 год с погрешностью ± 75 лет. Кроме того, Лаве с коллегами датировали полевой шпат в образцах брекчии из внутренней зоны сдвига методом ИК-стимулированной люминесценции (IRSL) и получили несколько больший возраст события: около 1200 лет назад, минимум ― 900 лет назад. Наконец, результаты удалось уточнить с помощью радиоуглеродного анализа растительных фрагментов из зоны контакта между лавинным материалом и коренной породой в долине Сети. Он дал калиброванную дату 1190 год с погрешностью ± 26 лет. Ученые определили место мегаобвала ― северо-восточный склон цирка Сабче, рядом с пиком Аннапурна IV. Здесь выделяются скальные поверхности без существенных признаков эрозии. С помощью байесовского моделирования, основанного на расчете геомеханических характеристик пород массива Аннапурна для различных высот, исследователи получили ряд реконструкций палео-Аннапурны IV, из которых отобрали удовлетворяющие требованию стабильности склона и данным об объеме обрушившейся породы. Усредненная модель показывает, что пик палео-Аннапурны IV достигал высоты около 8100 метров, то есть был примерно на 600 метров выше современной вершины Аннапурна IV (7525 метров). Анализируя причины события, авторы исследования указывают на явную склонность Высоких Гималаев (основного хребта этой горной системы) к крупномасштабным обрушениям склонов. Такие явления, как углубление долин и интенсивное морозобойное растрескивание вблизи границы питания ледника, можно рассматривать как факторы подготовки катастрофы, так как они формируют неустойчивые зоны вокруг ледниковых цирков. Определенную роль в этом процессе играет, вероятно и ориентация залегания сланцеватых пород. Что касается триггера обрушения, то кажущееся логичным предположение о крупном землетрясении в данном случае представляется ученым сомнительным. Вблизи Аннапурны известны сильные землетрясения около 1100 года, а также в 1255 и в 1344 годах, но эти даты не совпадают с полученной для оползня в цирке Сабче. Лаве и его коллеги предположили, что за столь мощные обвалы ответственны постоянные мерзлотные условия на высочайших пиках. Они приводят к упрочению склонов и затрудняют тем самым возникновение мелких и средних оползней. Пик продолжает расти до тех пор, пока из-за гравитационной неустойчивости не окажется превышен предел механической прочности такой мерзлой породы. После этого происходит гигантский обвал. Подобный сценарий может действовать не только в Гималаях, но и в других высоких, активно растущих горных системах. Будущие исследования помогут точнее оценить вклад в эволюцию таких регионов, как Центральный Тянь-Шань, Памир, Каракорум, и установить связь между скоростью тектонического подъема и высотой крупнейших пиков над границей питания ледников. Ранее N + 1 сообщал о том, как на берегу Каспийского моря обнаружили крупнейший активный оползень на суше, и о том, что потепление вызовет в высокогорных районах Северного полушария экстремальные проливные дожди. А еще мы рассказывали, как на Эвересте, на высоте более пяти километров зоологи нашли помет манулов.