Из микроканалов сделали акустические волноводы для фокусировки частиц

David J. Collins et al./ Physical Review Letters, 2018
Физики разработали метод акустической фокусировки частиц в микроканалах, основанный на взаимодействии звуковой волны со стенками канала. За счет этого взаимодействия микроканалы становятся для звуковой волны своеобразным волноводом. В зависимости от частоты используемой волны, с помощью предложенного подхода можно или фокусировать частицы в виде тонкого потока в центре канала, или, наоборот, — разводить их ближе к стенкам, пишут авторы работы в Physical Review Letters.
Одна из задач, с которой часто приходится сталкиваться при использовании микрофлюидных устройств, — фокусировка и разделение по размерам небольших коллоидных частиц, макромолекул или клеток. Для решения этой задачи, наряду с гидродинамическими методами (в первую очередь, инерционной фокусировкой и фракционирования с помощью комбинации потока и внешнего поля) и методами, основанными на использовании электрического или магнитного полей, довольно часто предлагают использовать акустические волны. Как правило, фокусировка и разделение коллоидных частиц или клеток с помощью акустических волн происходит за счет их взаимодействия с самой жидкостью, в результате чего возникает поле давлений, которое направляет частицы в нужные положения. При этом обычно длина волны и геометрические параметры каналов не связаны друг с другом напрямую, поэтому нужные параметры приходится подбирать вручную, а взаимодействие акустической волны со стенками только уменьшает точность фокусировки.
Группа физиков из Сингапура, Австралии и США под руководством Е Ая (Ye Ai) из Сингапурского университета технологии и дизайна предложила не подавлять взаимодействие акустической волны со стенками канала, а наоборот, использовать этот эффект для повышения точности фокусировки. Для этого авторы работы использовали поверхностные акустические волны, фронт которых направлен вдоль стенок каналов. Источником акустической волны служила нижняя стенка канала. Из-за взаимодействия распространяющихся по жидкости акустических волн с вертикальными стенками, в жидкости создается очень неоднородное поле давлений, симметрия распределения которого определяется с геометрией канала.
При этом рассчитанный критический угол полного внутреннего отражения, который необходим для наблюдения такого эффекта, составляет для скорости распространения звука в воде и полидиметилсилоксане (из которого делают микрофлюидные чипы) 43 градуса. За счет взаимодействия с коллоидными частицами внутри канала возникающие поля можно использовать и для фокусировки частиц, которые смещаются из областей высокого давления в области низкого. Изменяя частоту звуковой волны (то есть фактически отношение длины волны к ширине канала), можно менять положение и размер этих областей.
Изменяя частоту акустической волны, авторам удалось добиться двух различных режимов фокусировки. Так, при частоте 53,3 мегагерца частицы фокусировались в центре канала, а при частоте 46,2 мегагерца - наоборот, разводились к стенкам канала. Если же частоту волны подобрать таким образом, чтобы длина волны была в четыре раза меньше ширины канала, то можно добиться образования четырех равнозначных положений равновесия, и частицы можно разводить по четырем каналам.
По словам авторов работы, предложенный ими метод поможет в будущем значительно расширить спектр возможных применений устройств, основанных на принципах акустической микрофлюидики. Если правильно учитывать взаимодействия между акустическими волнами и стенками каналов, можно изменять время нахождения частиц в канале, их гидродинамическое поведение, а также форму кластеров, в которые они собираются.
Чтобы фокусировать частицы в микроканале на определенном расстоянии от стенки, кроме акустических методов можно использовать, инерционные гидродинамические силы, которые, кроме непосредственно фокусировки, еще и позволяют развести отдельные частицы на одинаковое расстояний друг от друга. Для альтернативного способа разделения частиц ученые предлагают применять комбинацию электрического поля и бороздок на стенках канала.
Александр Дубов