Исследователи научились повышать прочность древесины с помощью варки деревянных брусков в щелочном растворе и прессования. После этой процедуры бруски становятся в пять раз тоньше и в 11,5 раз прочнее, сообщается в журнале Nature.
Далеко не все ученые-материаловеды разрабатывают новые материалы с нуля, синтезируя их искусственно. Некоторые предпочитают брать за основу уже существующие природные материалы и улучшать их характеристики различными способами. Нередко в качестве основы используется древесина — один из самых распространенных природных материалов. К примеру, в прошлом году ученые создали композитный аналог паутины, на 90 процентов состоящий из нановолокон целлюлозы, добытых из дерева.
Исследователи под руководством Лянбин Ху (Liangbing Hu) из Мэрилендского университета также взяли за основу древесину и разработали метод, повышающий ее прочность на порядок. Он состоит из двух основных этапов. Сначала деревянные бруски помещаются в кипящий раствор гидроксида и сульфита натрия и варятся семь часов. После этого их несколько раз промывают кипящей деионизированной водой и удаляют остатки раствора. Такая обработка оставляет в древесине почти все целлюлозные волокна, но удаляет большую часть окружающих их лигнина и гемицеллюлозы. За счет этого древесина становится более пористой и менее жесткой.
После этого древесные бруски прессуются при температуре 100 градусов Цельсия. Тесты исследователей на дубовых и липовых брусках показали, что при этом их толщина уменьшается в пять раз, а плотность увеличивается в три раза, тогда как без удаления лигнина и гемицеллюлоз плотность меняется гораздо слабее.
Помимо этого ученые протестировали механические свойства обработанного дерева. Выяснилось, что после обработки прочность липы возрастает в 11,5 раз с 52 до 587 мегапаскалей. Исследователи смогли упрочнить до похожих значений (608 мегапаскалей) дубовые бруски, но их прочность была изначально в два раза выше. Такая прочность сравнима со многими марками нержавеющей стали. Помимо этого, удельная прочность такой древесины оказалась заметно выше, чем у многих сплавов, к примеру, в 1,7 раз выше, чем у титанового сплава Ti-6Al-4V.
Ученые проанализировали структуру на сканирующем микроскопе и выяснили, что в отличие от спрессованной древесины, из которой не удалялись лигнин и гемицеллюлозы в обработанной древесине целлюлозные структуры при прессовании становятся гораздо ближе и переплетаются.
В 2016 году эта группа исследователей создала похожим образом другой материал на основе древесины. Вместо того, чтобы прессовать дерево после варки они залили ее эпоксидной смолой, которая удалила из полостей внутри древесины воздух и сделала ее прозрачной.
Григорий Копиев
Ее температура на прямом солнце оказалась до двух градусов ниже окружающего воздуха
Китайские ученые разработали многослойные цветные пленки, которые могут охлаждать поверхность до двух градусов Цельсия по сравнению с температурой окружающей среды. Высоко-насыщенный цвет этих пленок — до 100 процентов цветопередачи — виден в широком диапазоне углов (± 60 градусов). На создание такой структуры физиков вдохновили бабочки вида Morpho menelaus. Статья опубликована в журнале Optica. Большинство искусственно созданных красок работают из-за поглощения части диапазона видимого света, что может приводить к существенному нагреву окрашенных ими предметов. Чтобы предотвратить нежелательный нагрев часто используют белую краску, которая практически полностью отражает солнечную энергию. Создание разноцветных поверхностей, которые при этом не нагреваются — до сих пор сложная задача. Однако в природе встречается и другой способ цветовой передачи. Например у некоторых бабочек цвет крыльев возникает при возникновении интерференции из-за специфического отражения света от периодической структуры их крыльев. Ван Гопин (Guo Ping Wong) с коллегами из Шеньчжэньского университета предложили свое решение проблемы нагрева окрашенных поверхностей, как раз вдохновившись структурой крыльев бабочек M. menelaus. Благодаря многослойности и наличию неупорядоченных компонентов, крылья бабочек этого вида передают высокую насыщенность синего цвета в широком угле обзора. Ученые воссоздали аналогичную структуру, поместив нескольких слоев из оксидов титана TiO2 и кремния SiO2, на матовое стекло, расположенное на отражающей серебряной поверхности. Ученые оптимизировали толщину верхних слоев и добились полного отражения нежелательного желтого света. При этом синий свет свободно проникал через верхнюю многослойную структуру, испытывал диффузное отражение от неупорядоченного матового стекла, отражался от серебряного зеркала и, возвращаясь через верхнюю многослойную структуру, обеспечивал насыщенный синий цвет образца. В результате ученым удалось добиться высокой насыщенности синего цвета, до 100 процентов, в угле обзора ±60 градусов, за исключением узкого диапазона — зеркального по отношению к падающему свету — в котором отражался желтый цвет. При этом эта пленка обеспечила охлаждение до двух градусов Цельсия ниже температуры окружающей среды, что сравнимо с эффективностью бесцветной охлаждающей пленки на основе серебра и полидиметилсилоксана (ПДМС). Охлаждение образца происходило за счет высокой эффективности диффузного отражения синей части спектра, малого поглощения нежелательной части видимого спектра и ближнего инфракрасного излучения, а также из-за высокого излучения в среднем инфракрасном диапазоне. Ученые создали по той же технологии образцы различных цветов и экспериментально измерили их способность охлаждать поверхности, располагая их на крыше здания института и на автомобилях. Обычная синяя краска при температуре воздуха 27 градусов Цельсия и на прямом солнце нагревалась в этих экспериментах до примерно 70 градусов. А образцы новой пленки в тех же условиях продемонстрировали температуру поверхности до 45 градусов ниже. Авторы статьи подсчитали, что за обычный метеорологический год в Шеньчжене замена обычной синей краски на охлаждающую могла бы привести к сохранению около 1377 мегаджоулей на квадратный метр энергии, требующейся на охлаждение. Ученые полагают, что дальнейшая оптимизация структуры пленок, например замена серебра на многослойный диэлектрик, позволит еще больше увеличить охлаждающий эффект. Ученых не в первый раз привлекла способность неупорядоченных структур в природных объектах к охлаждению. Они хорошо рассеивают солнечный свет, что можно использовать, например, для предотвращения таяния льдов.