Акулы научили физиков мерить колебания электрического поля в соленой воде

Z. Zhang et al./ Nature, 2017
Американские физики разработали сенсоры для регистрации слабых изменений электрического поля в соленой воде на основе никелата самария. Устройство такого детектора аналогично структуре электрочувствительных органов акул, пишут ученые в статье в Nature.
Некоторые из видов хрящевых рыб, в частности, акулы и скаты, на голове имеют специальные органы чувств — ампулы Лоренцини, — которые отвечают за улавливание очень слабых изменений напряженности внешнего электрического поля. Эти ампулы представляют собой тонкие трубчатые образования диаметром не более двух миллиметров и длиной в пару сантиметров, заполненные гелеобразным веществом с полупроводниковыми свойствами, которое может обмениваться ионами водорода с морской водой. За счет изменения проводимости содержимого ампул акула чувствует, как меняется внешнее электрическое поле, что помогает ей охотиться. При этом в зависимости от длины ампулы акула может улавливать сигналы разной частоты: чем длиннее ампула, тем ниже частота колебаний электрического поля.
Коллектив физиков из США и Канады под руководством Шрирама Раманатана (Shriram Ramanathan) из Университета Пердью предложил создать аналогичный ампулам Лоренцини детектор для слабых электрических полей в соленой воде на основе никелата самария SmNiO3. Это вещество обладает структурой перовскита и относится к классу сильно коррелированных электронных систем, электронные и магнитные свойства которых определяются сильным взаимодействием между электронами. Никелат самария устойчив в водной среде и проводит электрический ток, используя в качестве носителей заряда протоны H+. Протонная проводимость и зависимость сопротивления от температуры делают этот материал очень похожим по своим свойствам на гелевое вещество, находящееся внутри ампул Лоренцини. Чтобы проверить эффективность никелата самария в качестве детектора электрического поля, ученые провели измерения его сопротивления в соленой воде (с концентрацией хлорида натрия 0,1 моль на литр).
Для подтверждения механизма проводимости ученые провели компьютерное моделирование исследуемого материала, с помощью которого показали, как ион водорода захватывается и перемещается по кристаллической структуре.
По утверждению химиков, предложенная ими технология может быть использована как для изучения морских экосистем, так и для отслеживания движения кораблей для военных или гражданских целей. В ближайшем будущем ученые планируют исследовать работу устройства непосредственно в море.
Использование электрочувствительных органов рыб в качестве прототипа для искусственных материалов — не редкость. Например, недавно ученые создали биосовместимые гибкие батарейки, состоящие из цепочек гидрогелевых частиц, по структуре аналогичные электрическому органу угря.
Александр Дубов