С помощью эксперимента по распространению акустических колебаний по микроканалу внутри жидкой пены (аналогичном классическому эксперименту Мельде для упругой струны) французские физики обнаружили необычный нелинейный режим колебаний, в котором образуются два участка с колебаниями разной амплитуды и частоты. Обнаруженное явление поможет более точно понять природу необычных акустических свойств пен, пишут ученые в Physical Review Letters.
Жидкие пены имеют очень сложную структуру, состоящую из воздушных пузырей, жидких пленок и микроканалов, которые образуются на стыке трех пленок. Для такой системы характерно наличие большого количества межфазных границ, поэтому гидродинамические свойства, в частности, зарождение и распространение волн, довольно сильно отличаются от того, что происходит на поверхности отельных жидких струй и капель. Это приводит к появлению и необычных акустических свойств, и в некоторых случаях пены ведут себя как акустические метаматериалы, подавляя часть распространяющихся через них звуковых волн.
Чтобы объяснить подобные необычные свойства пен, группа физиков из Университета Ниццы — Софии Антиполис под руководством Кристофа Рофаста (Christophe Raufaste) рассмотрела процесс распространения волны в отдельном микроканале внутри пены. Для этого ученые сделали рамку в виде треугольной призмы, на которой закреплялись три пленки мыльной воды (вода с поверхностно-активным веществом, коэффициент поверхностного натяжения которой составил 36 миллиньютонов на метр — примерно в два раза меньше, чем у воды). Эти пленки сходились в центре, образуя на центральной оси призмы тонкий жидкий микроканал. Один из концов микроканала авторы работы прикрепили к источнику поперечных колебаний, который совершал периодические вертикальные движения с частотой от 30 до 80 герц, а другой — к источнику жидкости, чтобы поддерживать постоянную толщину канала около 1 миллиметра. Такой эксперимент аналогичен эксперименту Мельде по возбуждению стоячих волн в упругих струнах с помощью возбуждения поперечных колебаний, только роль струны в нем выполняет жидкий микроканал.
Оказалось, что при распространении волны происходит уменьшение толщины канала, и при небольших амплитудах происходит формирование устойчивых регулярных колебаний, аналогичных стоячим волнам в упругой струне. При больших амплитудах происходит переход в нелинейный режим, и в канале образуется две зоны различной толщины, амплитуды и фазы колебаний. При этом диаметр двух участков микроканала отличался примерно в десять раз: вблизи источника колебаний он составлял 0,1 миллиметра, а с противоположной стороны — один миллиметр).
Для описания этого эффекта ученые предложили использовать аналог уравнения Бернулли, связывающий периодическую силу, возбуждающую колебания, с силой поверхностного натяжения, которая пытается их подавить. С помощью предложенной нелинейной модели удалось достаточно точно описать сделанные в эксперименте наблюдения.
Авторы работы отмечают, что этот эффект довольно необычный, и вероятно, он поможет объяснить свойства распространения звуковых волн в пене. В будущем знание механизмов распространения акустических колебаний может быть использовано, в частности, для получения материалов для подавления ударных волн.
Исследование акустических свойств в пенах является не единственным примером необычных акустических свойств тонких нитей и микроканалов в системах со сложной связанной структурой. Например, в паутинах физики обнаружили запрещенную фононную зону, которая не дает распространяться звуковым волнам определенной частоты.
Александр Дубов
Для скалярной константы связи удалось уточнить предел почти на порядок
Физики из Великобритании получили наиболее жесткие на сегодняшний день ограничения на параметры ультралегкой темной материи. Для этого они использовали данные атомных часов и новый модельно-независимый подход к изучению вариаций во времени этих параметров и других фундаментальных констант. Работа опубликована в журнале New Journal of Physics. По современным представлениям темной материи во Вселенной примерно в пять раз больше обычного вещества. Она не участвует в электромагнитных взаимодействиях и поэтому недоступна прямому наблюдению. Наиболее вероятные кандидаты на роль темной материи — вимпы — до сих пор экспериментально не обнаружены. Поэтому ученые рассматривают и другие теории о составе темной материи: от сверхлегких частиц, например, аксионов, до первичных черных дыр. Ранее ученые уже использовали данные атомных часов для ограничения параметров ультралегкой темной материи с массой менее 10-16 электронвольт. На этот раз физики Натаниель Шерилл (Nathaniel Sherrill) и Адам О Парсонс (Adam O Parsons) с коллегами из университета Сассекса и Национальной физической лаборатории в Теддингтоне предложили новый модельно-независимый подход к изучению временных вариаций фундаментальных констант при анализе данных атомных часов. При этом количество свободных параметров увеличилось, что по мнению ученых позволит тестировать различные модели и их константы связи. Чтобы проверить новый подход в действии, физики использовали три типа атомных часов: на основе атомов стронция Sr в решетчатой ловушке, на основе ионов иттербия Yb+ в ловушке Пауля и атомные часы на цезиевом фонтане Cs. Частоты всех часов измерялись относительно водородного мазера, после чего рассчитывались отношения частот Yb+/Sr, Yb+/Cs и Sr/Cs. Это позволило исключить возможные ошибки, связанные с нестабильностью работы мазера из-за изменения параметров окружающей среды. Генерируемые частоты во всех часах зависят от соотношений постоянной тонкой структуры и массы электрона. Поэтому из взаимных измерений частот трех часов можно получить колебания со временем этих констант. Особенностью эксперимента стала независимость измерений от предполагаемой функциональной зависимости констант от времени. Поэтому полученные ограничения могут быть использованы при рассмотрении любых гипотетических моделей. В частности, ученые получили ограничения на константы связи гипотетических частиц темной материи в области масс от 10-20 до 10-17 электронвольт. Для скалярной константы связи dγ(1) физикам удалось исключить новую область параметров, усилив предыдущий предел примерно на порядок. Ученые до сих пор не могут определить параметры темной материи, хотя и видят ее проявления в различных процессах. Чтобы лучше разобраться, какие на сегодняшний день существуют модели, описывающие темную материю, пройдите наш тест.