Группа ученых из Испании и Китая смоделировала процесс эволюции двух примитивных существ на квантовом компьютере. Для этого исследователи использовали облачный квантовый компьютер IBM ibmqx4 и показали, что в такой системе действительно выполнятся законы эволюции. Препринт статьи выложен на сайте arXiv.org.
Вопрос происхождения и эволюции жизни является одним из самых сложных и спорных вопросов для науки. Исследовать этот вопрос можно по-разному, например, разрабатывая математическую модель эволюции или обсчитывая гипотетические процессы на компьютере. До последнего времени ученые могли использовать для расчетов только обычные компьютеры, однако сейчас уже появились образцы коммерческих квантовых вычислителей, которые помогут исследователям лучше смоделировать процесс эволюции.
В данной статье группа ученых под руководством Унай Альвареза-Родригеза (Unai Alvarez-Rodriguez) смоделировала эволюцию простой системы на коммерческом квантовом компьютере IBM ibmqx4, который оперирует пятью кубитами и позволяет любому желающему получить к ним доступ из облака. Этот компьютер был запущен IBM весной 2016 года, а к концу этого года IBM обещает запустить новую версию этого облачного компьютера, оперирующего уже двадцатью кубитами.
Система, смоделированная учеными, включала в себя двух примитивных «живых существ». Каждое из этих существ состояло из двух кубитов, в которых были закодированы их «генотип» и «фенотип». В генотипе содержалась информация, которая описывала тип живой клетки и передавалась из поколения в поколение (своеобразный, сильно упрощенный аналог ДНК). Состояние фенотипа не передавалось в следующее поколение, однако в течение «жизни» существа оно менялось из-за взаимодействия с окружающей средой и со вторым существом и определяло длительность его жизни.
Как и обычные существа, модельные проживали те же этапы жизни, только реализованные с помощью квантовых эффектов. Так, важнейшим для жизни процессом является самокопирование, которое позволяет живым существам размножаться и передавать генетическую информацию в следующие поколения. Этот процесс ученые реализовали, запутывая кубит, описывающий генотип, и чистый кубит, а затем передавая информацию от первого ко второму.
В свою очередь, взаимодействие с внешней средой определялось фенотипом существа. В ходе этого взаимодействия состояние фенотипа постепенно разрушалось, моделируя старение. Окончательная смерть наступала, когда кубит достигал определенного асимптотического состояния. Чтобы смоделировать естественный отбор, в каждом поколении ученые отбирали и преимущественно копировали генотипы тех существ, которые прожили дольше.
Также исследователи смоделировали случайные мутации при копировании. Для этого они время от времени перемешивали фенотипы двух существ, оставляя их генотипы неизменными. Конечно, это все еще не похоже на половое размножение, в ходе которого генетическая информация разных особей перемешивается, однако неплохо моделирует обычные клетки, которые размножаются простым делением.
Указанные процессы ученые повторили много раз. Например, в экспериментах без перемешивания фенотипов успевало смениться 8192 поколений. При моделировании процессов с различными типами мутаций ученые повторяли расчеты 1024 раза, считая частоту мутаций равной 2/27.
В результате оказалось, что мутации действительно помогают существам выживать — в этом случае их средняя продолжительность жизни становилась немного больше, чем в эволюции без перемешивания фенотипов. В целом, полученные экспериментальные данные довольно хорошо совпали с теоретическими и рассчитанными ранее на классическом компьютере распределениями (с «чистотой» около 93 процентов). Впрочем, ученые отмечают, что малое число кубитов накладывает жесткие ограничения на процесс эволюции. Поэтому они собираются повторить эксперименты на более новых версиях облачного компьютера IBM.
В конце ноября сразу две группы ученых сообщили о создании квантовых компьютеров, оперирующих 51 и 53 кубитами. Обе группы не только смогли поддерживать в когерентном полностью управляемом состоянии такое большое число кубитов, но и смоделировали некоторые явления, которые на классическом компьютере обсчитать нельзя. Подробнее прочитать о квантовых компьютерах и квантовом превосходстве можно в нашем материале.
Дмитрий Трунин
Ее температура на прямом солнце оказалась до двух градусов ниже окружающего воздуха
Китайские ученые разработали многослойные цветные пленки, которые могут охлаждать поверхность до двух градусов Цельсия по сравнению с температурой окружающей среды. Высоко-насыщенный цвет этих пленок — до 100 процентов цветопередачи — виден в широком диапазоне углов (± 60 градусов). На создание такой структуры физиков вдохновили бабочки вида Morpho menelaus. Статья опубликована в журнале Optica. Большинство искусственно созданных красок работают из-за поглощения части диапазона видимого света, что может приводить к существенному нагреву окрашенных ими предметов. Чтобы предотвратить нежелательный нагрев часто используют белую краску, которая практически полностью отражает солнечную энергию. Создание разноцветных поверхностей, которые при этом не нагреваются — до сих пор сложная задача. Однако в природе встречается и другой способ цветовой передачи. Например у некоторых бабочек цвет крыльев возникает при возникновении интерференции из-за специфического отражения света от периодической структуры их крыльев. Ван Гопин (Guo Ping Wong) с коллегами из Шеньчжэньского университета предложили свое решение проблемы нагрева окрашенных поверхностей, как раз вдохновившись структурой крыльев бабочек M. menelaus. Благодаря многослойности и наличию неупорядоченных компонентов, крылья бабочек этого вида передают высокую насыщенность синего цвета в широком угле обзора. Ученые воссоздали аналогичную структуру, поместив нескольких слоев из оксидов титана TiO2 и кремния SiO2, на матовое стекло, расположенное на отражающей серебряной поверхности. Ученые оптимизировали толщину верхних слоев и добились полного отражения нежелательного желтого света. При этом синий свет свободно проникал через верхнюю многослойную структуру, испытывал диффузное отражение от неупорядоченного матового стекла, отражался от серебряного зеркала и, возвращаясь через верхнюю многослойную структуру, обеспечивал насыщенный синий цвет образца. В результате ученым удалось добиться высокой насыщенности синего цвета, до 100 процентов, в угле обзора ±60 градусов, за исключением узкого диапазона — зеркального по отношению к падающему свету — в котором отражался желтый цвет. При этом эта пленка обеспечила охлаждение до двух градусов Цельсия ниже температуры окружающей среды, что сравнимо с эффективностью бесцветной охлаждающей пленки на основе серебра и полидиметилсилоксана (ПДМС). Охлаждение образца происходило за счет высокой эффективности диффузного отражения синей части спектра, малого поглощения нежелательной части видимого спектра и ближнего инфракрасного излучения, а также из-за высокого излучения в среднем инфракрасном диапазоне. Ученые создали по той же технологии образцы различных цветов и экспериментально измерили их способность охлаждать поверхности, располагая их на крыше здания института и на автомобилях. Обычная синяя краска при температуре воздуха 27 градусов Цельсия и на прямом солнце нагревалась в этих экспериментах до примерно 70 градусов. А образцы новой пленки в тех же условиях продемонстрировали температуру поверхности до 45 градусов ниже. Авторы статьи подсчитали, что за обычный метеорологический год в Шеньчжене замена обычной синей краски на охлаждающую могла бы привести к сохранению около 1377 мегаджоулей на квадратный метр энергии, требующейся на охлаждение. Ученые полагают, что дальнейшая оптимизация структуры пленок, например замена серебра на многослойный диэлектрик, позволит еще больше увеличить охлаждающий эффект. Ученых не в первый раз привлекла способность неупорядоченных структур в природных объектах к охлаждению. Они хорошо рассеивают солнечный свет, что можно использовать, например, для предотвращения таяния льдов.