Роман Морячков, аспирант Института физики Красноярского научного центра СО РАН, стал одним из победителей Всероссийского инженерного конкурса студентов и аспирантов ВИК.Нано 2017. Победу ученому принесла разработка нового подхода для изучения пространственной структуры одиночных биологических молекул, сочетающего данные синхротронных и спектральных исследований. Работа Романа позволяет решить одну из сложнейших задач структурной биологии — решение атомарной структуры ДНК, РНК, белков-ферментов и рецепторов. Церемония награждения ВИК.Нано 2017 прошла в понедельник, 4 декабря. Конкурс проводится Фондом инфраструктурных и образовательных программ.
Для участия в конкурсе участники могли представить либо свои собственные проекты, либо решить производственные задачи, составленные крупными технологическими предприятиями. Всего было подано 57 заявок из 23 городов России, в финал прошло 17 проектов. На протяжении нескольких дней с молодыми учеными работали эксперты в области патентного права и коммерциализации. В финале конкурса участники представили как технологическую часть проектов, так и их коммерческую составляющую в виде бизнес-плана.
Эксперты назвали победителями пять проектов. Лидерами среди них являются проекты Романа Морячкова (КНЦ СО РАН) и Александра Момзякова (КНИТУ). Первый посвящен решению атомарной структуры небольших биологических молекул — в частности, ДНК-аптамеров, состоящих из всего лишь нескольких десятков азотистых оснований. Роман предложил объединить данные о форме молекул, которые предоставляет малоугловое рентгеновское рассеяние, с данными инфракрасной спектроскопии. Если первая позволяет грубо оценить форму молекул, то вторая несет в себе информацию о том, какие типы связей есть в молекуле и как близко располагаются отдельные пары атомов.
Работа Александра Момзякова посвящена разработке композиционных материалов на основе ПВХ со стеаратами металлов. Александр нашел способ реализовать синтез без использования неэкологичных растворителей, к тому же удешевив производство. В тройку лидеров также вошел Владимир Петров (Санкт-Петербургский политехнический университет), разработавший детальный проект системы автономного энергоснабжения для частного дома, основанной на гетероструктурных солнечных батареях. Он также получил в рамках ВИК.Нано специальный приз – стажировку в компании «Хевел», крупнейшей российской компании по производству солнечных батарей. По признанию конкурсанта именно желание работать в этой компании подтолкнуло его к участию в конкурсе.
Для тройки лидеров будет организован трехдневный технологический тур в Лёвен по одному из крупнейших в Европе центру исследований и инноваций IMEC с посещением лабораторий и «чистых комнат».
Также призы получили Алена Попова (Тамбовский государственный технический университет) и Эдгар Долгий (Вятский государственный университет). Работа Эдгара, к примеру, посвящена добавке к резине на основе модифицированных углеродных нанотрубок – она может найти применение в шинах специального назначения.
Среди других интересных докладов можно выделить работы Павла Шалаева (МИЭТ), разрабатывающего вместе с соавторами приборы для исследования свойств растворов наночастиц сложной формы, и Сергея Еремина (МИСиС), работающего над технологией 3D-печати из порошков алмаза.
ВИК.Нано проводится уже третий год. Одна из целей конкурса – вовлечь молодых инженеров в высокотехнологичное предпринимательство и производство.
Владимир Королев
Возможно, они образовались из мертвых бактерий
Японские ученые нашли в Южной Африке графеноподобные структуры возрастом около 3,2 миллиарда лет. Изотопный состав указывает на то, что структуры могли образоваться из мертвых бактерий. Ученые рассказали о своем открытии на геологической конференции Goldschmidt 2023. Графен — это изолированные слои графита толщиной в один атом. Графен уже используется во многих современных технологиях — от транзисторов и топливных элементов до устройств для опреснения воды. Будущие нобелевские лауреаты Андрей Гейм и Константин Новоселов впервые получили графен вручную, отделяя его слои на обычную липкую ленту. Однако эта технология плохо воспроизводится и для промышленного получения, конечно, не подходит. Сейчас графен получают методами осаждения из газовой фазы (CVD) или химическим отслаиванием. Все эти способы сложны и требуют использования высоких температур и жестких реагентов. Поэтому до недавнего времени обнаружение графена в природе казалось маловероятным. Японские геологи под руководством Йоко Отомо (Yoko Ohtomo) неожиданно обнаружили графеноподобные структуры в горной породе возрастом 3,2 миллиарда лет. Ученые изучали горные образцы железосодержащей силикокластической породы, полученные в районе золотой шахты Шеба (Sheba) в Южной Африке. Силикокластическими называют некарботнатные обломочные и осадочные породы. В одном из образцов Отомо и ее коллеги обнаружили прозрачные пленки и волокна размером до сотни микрон, состоящие преимущественно из углерода с незначительными примесями азота и серы. Все пленки оказались слоистыми, при этом слои имели графеноподобную структуру. Чаще всего такие графеноподобные структуры образовывали пленку вокруг более крупных частиц железа или титана. Анализ изотопного состава указывает на то, что углерод в составе графена мог иметь биологическое происхождение. Возможно, его источником были мертвые бактерии. Впрочем, Отомо и ее коллеги признают, что механизм образования структур требует более подробного изучения и роль бактерий в нем пока не ясна. Интересно, что несколько лет назад нидерландские химики уже показали, что живые бактерии способны восстанавливать оксид графена до графена в относительно мягких условиях. Возможно, результаты, полученные Отомо и ее коллегами помогут оптимизировать этот процесс и найти более простые пути получения графена. В начале года мы писали об исследовании японских и американских физиков, которые объяснили сверхпроводимость двухслойного графена необычной геометрией волновых функций электронов и структурой электронных зон. А о перспективах и проблемах использования графена можно прочитать в нашем интервью с нобелевским лауреатом Константином Новоселовым