Полусинтетических бактерий научили расшифровывать искусственный генетический код

Бактерии, синтезирующие зеленый флуоресцентный белок
Carlos de Paz / flickr
При помощи искусственной третьей пары оснований в ДНК ученые смогли закодировать аминокислоту, расширив тем самым природный генетический код. Ранее та же исследовательская группа встроила третью пару оснований X-Y в ДНК бактерий и, таким образом, создала первый полусинтетический живой организм. В новой работе, опубликованной в Nature, бактерий научили не просто воспроизводить искусственную ДНК, но и реализовывать закодированную в ней информацию в виде белка.
Эксперименты с кишечной палочкой с расширенным генетическим алфавитом проводит группа под руководством Флойда Ромесберга из Исследовательского института Скриппса в Калифорнии. В нашей заметке вы можете прочитать, как ученые из лаборатории Ромесберга создали полусинтетических бактерий, способных стабильно воспроизводить (реплицировать) ДНК, содержащую помимо «природных» пар нуклеотидов A-T и G-C, лишнюю пару X-Y. Под X здесь скрывается синтетический дезоксинуклеозид dNaM, а под Y — dTPT3. Так как самостоятельно синтезировать дополнительные основания бактерии неспособны, X и Y в виде трифосфатов приходится добавлять в ростовую среду. Чтобы вещества попали в клетку, в геном бактерий ученые встроили ген транспортера из генома водоросли Phaeodactylum tricornutum.
Чтобы полусинтетическая ДНК могла копироваться и передаваться из поколения в поколение, лишние основания должна узнавать ДНК-полимераза. Но чтобы при помощи такой ДНК можно было закодировать белок (собственно, это основная функция ДНК), необходимо адаптировать к синтетическим молекулам гораздо более громоздкий аппарат трансляции. В новой работе ученым удалось это сделать.
Реализация наследственной информации происходит в клетке в несколько этапов. Сначала с ДНК считывается молекула матричной РНК (мРНК), которая служит «инструкцией» для рибосомы в процессе синтеза белка. Последовательность аминокислот закодирована в мРНК в виде последовательности трехбуквенных кодонов. Соответствие кодона и аминокислоты обеспечивает транспортная РНК (тРНК), которая содержит в себе антикодон, комплементарный кодону в мРНК. За правильное присоединение аминокислоты к тРНК отвечает фермент аминоацил-тРНК-синтетаза. Молекула тРНК, «заряженная» нужной аминокислотой, доставляет последнюю на рибосому, где аминокислота включается в белковую цепочку в нужном месте благодаря соответствию кодон-антикодон.
На втором этапе ученые присвоили искусственному кодону отдельную, неканоническую (то есть не входящую в двадцатку самых распространенных) аминокислоту. Для этого в «подопытную» кишечную палочку дополнительно ввели гены тРНК и соответствующей аминоацил-тРНК-синтетазы для пирролизина из микроорганизма Methanosarcina barkeri. Включение пирролизина в белок детектировали в первую очередь по свечению бактерий, которое достигло почти 70 процентов от свечения клеток с «натуральным» белком. Включение аминокислоты также детектировали по специфическому присоединению к остатку пирролизина флуоресцентного красителя в составе очищенного белка.
Помимо кодона AXC исследователи протестировали кодон GXC и соответствующий ему антикодон GYC, которые также успешно сработали для пирролизина. Таким образом, природный генетический код удалось расширить сразу на две позиции.
Дарья Спасская