Частицы темной материи не удается обнаружить напрямую из-за того, что они отталкиваются от частиц обычной материи, считает физик из Брукхейвенской национальной лаборатории Хуман Давудиазл (Hooman Davoudiasl). По его расчетам, опубликованным в Physical Review D, если радиус действия этой отталкивающей силы сопоставим с радиусом Земли или превышает его, частиц темной материи около планеты просто нет, и физикам нечего детектировать.
С помощью темной материи удается сравнительно просто объяснить многие явления, например гравитационное линзирование, кривые вращения галактик или флуктуации температуры реликтового излучения. Без привлечения темной материи эти явления объясняются гораздо более сложным образом. По текущим оценкам, доля темной материи во Вселенной составляет около 22 процентов, что почти в пять раз больше, чем доля обычной материи. Подробнее почитать о том, почему эта концепция так важна для современной науки, можно в нашем интервью с астрофизиком Андреем Дорошкевичем.
Обнаружить гравитационное действие темной материи несложно, например, наблюдая за движением галактик или искажением света, проходящего мимо галактических скоплений. Однако в прямых экспериментах, предполагающих, что электроны или атомные ядра должны рассеиваться на частицах темной материи (пусть и очень слабо), она до сих пор себя не проявила. Полученные экспериментально ограничения на сечения подобных процессов огромны — например, эксперименты на LHC устанавливают верхнюю границу для сечения 10−46 ÷ 10−42 квадратных сантиметров.
В данной работе физик Хуман Давудиазл (Hooman Davoudiasl) предложил объяснить отсутствие прямых наблюдений темной материи тем, что рядом с Землей ее попросту нет. Для этого ученый предположил, что взаимодействие между частицами темной и обычной материи осуществляется посредством бозона с очень маленькой массой (порядка 10−14 электронвольт), так что между этими частицами возникает сила отталкивания, которая имеет радиус действия, сравнимый с радиусом Земли. Такой подход к описанию взаимодействий используется в теоретической физике с тех пор как Юкава объяснил взаимодействие между адронами с помощью пиона (только его масса составляет примерно 108 электронвольт, и радиусы соответствующих сил получаются в 1022 раз меньше).
В результате вокруг Земли возникает эффективный потенциал, в котором частицам темной материи энергетически невыгодно находиться близко от планеты. Казалось бы, они все еще могут преодолеть этот потенциал, если имеют достаточную кинетическую энергию. Однако скорость движения темной материи в окрестностях Земли примерно равна 10−3 от скорости света, а унитарный предел для частиц темной материи составляет 350 тераэлектронвольт, и максимально возможная кинетическая энергия частиц оказывается равной примерно 200 мегаэлектронвольт. Это намного меньше высоты возникающего потенциального барьера (~10 гигаэлектронвольт), поэтому преодолеть его частицы не могут.
Впрочем, нужно иметь в виду, что статья физика является чисто теоретической и предполагает только один из способов объяснить неудачи экспериментов по прямому детектированию. Более того, в этой статье теоретик не приводит никаких аргументов в пользу существования такой эффективной отталкивающей силы (кроме невероятно малых значений для сечения взаимодействия, полученных в экспериментах) и не вычисляет массу предложенного бозона каким-либо независимым способом. Тем не менее, экспериментально проверить эту гипотезу в принципе можно. Например, учет этого взаимодействия должен привести к поправкам при гравитационном линзировании на скоплениях галактик. Кроме того, если масса бозона достаточно мала и радиус действия сил оказывается сравним с радиусом орбиты Земли, в течение года число прямых регистраций рассеяния частиц темной материи на нуклонах будет изменяться, и эту зависимость можно померить экспериментально. Разумеется, если точность соответствующих экспериментов достигнет необходимой величины.
В конце октября коллаборация XENON1T опубликовала в Physical Review Letters результаты 34-дневного эксперимента по поиску темной материи, в результате которого не удалось зарегистрировать ни одного события, отвечающего ее взаимодействию с обычной материей. Найденная в этом эксперименте верхняя граница для сечения рассеяния составила 10−46 квадратных сантиметров. Мы писали об этом эксперименте еще весной, когда препринт статьи вышел на сайте arXiv.org.
С другой стороны, в прошлом году ученые обнаружили следы темной материи в окрестностях Млечного Пути — для этого они анализировали распределение звезд в потоке Palomar 5. Также относительно недавно астрономы построили детальную карту распределения темной материи в скоплениях галактик, которая в целом совпала с предсказаниями модели ΛCDM (холодной темной материи).
Дмитрий Трунин
При каждом нажатии он меняет структуру, не забывая о предыдущих изменениях
Физики создали механический метаматериал с эффектом памяти, который можно использовать как примитивный счетчик до десяти. Этот материал представляет собой массив из десяти деформируемых ячеек, каждая из которых может находиться в одном из двух состояний, меняющихся при нажатии. При этом предыдущих изменений материал не забывает. В будущем счетчики с подобной конструкцией могут оказаться полезными для мягкой робототехники и умных сенсоров, пишут ученые в Physical Review Letters. Свойства метаматериалов определяются в первую очередь не химическим строением, а геометрической микроструктурой (например, расположением слоев различных веществ или периодичностью атомной решетки) и для них характерны аномальные значения различных физических параметров. Например, если растягивать в продольном направлении ауксетики, обладающие отрицательным значения коэффициента Пуассона, то в перпендикулярном направлении они расширяются (в то время как обычные материалы сжимаются). Ученые работают и над метаматериалами, обладающими памятью: они запоминают воздействие и реагируют на него сменой физических свойств. Например, если нагреть полимер с памятью формы, он вернет исходную (до деформации) форму. Однако такие материалы запоминают лишь начальное состояние, запомнить несколько последовательно меняющихся состояний им не под силу. Физики Мартин ван Хеке (Martin van Hecke) и Леннард Квакернак (Lennard Kwakernaak) из Лейденского университета разработали метаматериал, у которого память о предыдущих деформациях не сбрасывается. Храня информацию о предыдущих воздействиях, такой материал фактически способен считать: он запоминает каждое нажатие, последовательно меняя свою структуру. Ученые сделали материал на 3D-принтере из стоматологической силиконовой смеси для слепков. Он состоит из отдельных ячеек, каждая из которых включает в себя две балки: одну тонкую и одну толстую. Тонкая балка может изгибаться либо влево, либо вправо. Толстая балка служит перегородкой, отделяя ячейки материала друг от друга. Значение критической деформации для толстой и тонкой балок различны, поэтому одного нажатия достаточно для сгибания тонкой балки и частичной деформации толстой. Наличие толстой балки также не дает деформироваться тонкой балке в соседней ячейке. Материал считает следующим образом. В начальном состоянии {000...0} все тонкие балки изогнуты влево. При каждом изменении направления изгиба тонкой балки 0 меняется на 1. Превышая первым нажатием критическую деформацию тонкой балки, систему выводят в состояние {100...0}. После каждого следующего нажатия крайняя слева балка изгибается в правую сторону. Толстая балка при этом не деформируется, но за счет конструкции сгибает следующую тонкую. То есть система копирует состояние изогнутой вправо тонкой балки (1) с каждым нажатием на одну ячейку правее. В терминах нулей и единиц, подсчет можно записать как {000...0} → {100...0} → {110...0}→··· → {111...1}. До скольки может досчитать материал, зависит от числа ячеек и начального состояния системы, память метаматериала сохраняется до конца подсчета. По словам авторов работы, такой метаматериал с эффектом памяти фактически представляет собой простейший компьютер, который можно запрограммировать на счет с любого начального числа. Его работу ученые проверили, фиксируя значения критических деформаций и начиная счет с различных начальных чисел. Материаловеды отмечают, что такой счетчик из метаматериала можно изготовить и из других веществ, например каучука или полиуретана. В будущем из аналогичных ячеек ученые планируют собирать и двумерные массивы, на которых можно будет проводить более сложные вычислительные операции Метаматериалы хороши не только в счете: они помогают решать уравнения со скоростью света, а еще их можно превратить в непрерывные кристаллы времени.