Мощность землетрясений в складчатых горных системах оказалась напрямую связана со скоростью столкновения литосферных плит. К такому выводу пришли геологи, промоделировав геологические процессы, происходящие в горных областях с тектонической активностью. Результаты работы, опубликованной в Earth and Planetary Science Letters, объясняют, почему сейсмическая активность в Гималаях выше, чем, например, в Альпах. В будущем полученные данные позволят точнее предсказывать место и силу горных землетрясений.
В молодых складчатых горных системах движение литосферных плит, которое привело к их образованию, все еще продолжается и является причиной частых землетрясений. Мощность землетрясений определяется тектоническими процессами, но однозначных данных о связи между скоростью плит и мощностью землетрясений до последнего момента предложено не было. Связано это с тем, что для таких систем достаточно трудно создать компьютерную модель. Основная проблема, возникающая при моделировании, — наличие двух процессов, которые происходят на разных масштабах времени. Один шаг по времени в моделировании тектонических процессов соответствует примерно тысяче лет — периоду, на котором любые сейсмические эффекты изучать невозможно. Моделирование же на временном масштабе землетрясения не дает возможности полностью учесть процессы деформации плит при столкновении.
Для того, чтобы решить эту проблему, коллектив геологов под руководством Луки Даль Цилио (Luca Dal Zilio) из Швейцарской высшей технической школы Цюриха смоделировал столкновение литосферных плит с использованием двухстадийной модели, учитывающей температурные, сейсмологические и механические свойства плит при столкновении. Сначала авторы работы смоделировали столкновение плит с очень большим временным шагом (около 1000 лет), а потом постепенно уменьшали его до 5 лет, сохраняя при этом данные о механическом напряжении в земной коре. Это позволило смоделировать распространение разломов в коре на коротких временных масштабах и связать сейсмическую активность вблизи зон столкновения с параметрами тектонических процессов. Литосферные плиты в моделировании представляли собой трехслойные структуры, состоящие из верхней коры, гранитного среднего слоя и нижней коры. Моделирование провели для различный скоростей столкновения (от 10 до 50 миллиметров в год) и связали ее с параметрами возможного землетрясения.
Оказалось, что магнитуда землетрясений линейно зависит от скорости плит при столкновении. Так, для скорости плиты 10 миллиметров в год максимальная магнитуда возможного землетрясения составила 7, а для скорости 50 миллиметров — превысила 8. Эти отличия объясняются тем, что при больших скоростях движения плит происходит увеличение температуры и изменение их механических свойств. Из-за этого по-разному происходит их деформация и возникают отличия в глубине эпицентров землетрясений. Медленное столкновение плит приводит к землетрясению, эпицентр которого расположен на глубине около 12 — 15 километров, что соответствует взаимодействию верхней коры литосферных плит. Если же скорость плит достаточно большая, то помимо первого эпицентра, возникает еще один, более глубокий. Он располагается на глубине около 40 километров и соответствует взаимодействию при столкновении нижней коры литосферной плиты.
Результаты моделирования ученые сравнили с данными о землетрясениях магнитудой больше 4,5 в четырех молодых складчатых горных системах с различной скоростью движения литосферных плит: Альпах, Апеннинах, Загросе и Гималаях. Скорость движения литосферных плит в них составляет от 2,5 до 38 миллиметров в год и примерно соответствует тому диапазону, который исследовался в рамках моделирования.
Оказалось, что сейсмографические данные на качественном уровне хорошо согласуются с результатами компьютерного моделирования. Поэтому авторы работы надеются, что предложенная модель уже в ближайшем будущем поможет значительно точнее предсказывать место и мощность землетрясений в горных районах с повышенной сейсмической активностью.
Горные землетрясения, которые происходят из-за движения тектонических плит, могут привести к изменению географии, в частности небольшому горизонтальному сдвигу или изменению высоты отдельных горных вершин. Так, например, мощное землетрясение, которое произошло в 2015 году в Непале, привело к сдвигу Катманду на несколько метров к югу.
Александр Дубов
По мнению геохимиков, это произошло около 2,7 миллиарда лет назад
Измерив изотопный состав титана в метеоритах из группы хондритов и в образцах основных и ультраосновных земных пород различного возраста, геохимики обнаружили отрицательный сдвиг в соотношении изотопов, происшедший в период между 3,5 и 2,7 миллиарда лет назад. Исследователи связали его с наступлением эпохи усиленного роста континентальной коры, вызвавшего обеднение верхней мантии литофильными элементами. Сравнив полученные результаты с изотопным составом титана в современных базальтах, происходящих из мантийных источников разной глубины, ученые предположили, что геодинамический механизм, связанный с тектоникой плит, на раннем этапе обеспечивал конвективный перенос вещества лишь в пределах верхней мантии. Нижняя мантия, сохраняющая состав, близкий к примитивному, включилась в глобальный тектонический режим лишь после 2,7 миллиарда лет назад, сообщает статья в журнале Nature. По результатам сейсмических исследований ученые различают в мантии Земли два основных слоя ― верхнюю и нижнюю мантии, разделенные переходной зоной на глубине от 410 до 660 километров. Эти границы возникают за счет перехода слагающих мантию минералов в более плотные высокобарические модификации. В настоящее время благодаря данным сейсмической томографии известно, что через переходную зону происходит перенос вещества: погружающиеся в процессе субдукции слэбы ― фрагменты океанических литосферных плит ― достигают глубин нижней мантии, а подъем вещества может происходить за счет суперплюмов, формирующихся на границе ядра. Однако вопрос о том, как происходил массоперенос на протяжении геологической истории, до сих пор остается слабо изученным. Так, неясно, в какой степени примитивная мантия, соответствующая по составу протопланетному веществу (за вычетом компонентов ядра), на разных глубинах затронута дифференциацией и обеднена литофильными элементами из-за образования коры. Пролить свет на эволюцию мантии могут изотопные исследования. Поскольку степень фракционирования изотопов того или иного литофильного элемента во многом зависит от геодинамических условий, его изотопные соотношения в породах разного происхождения отличаются. Например, с помощью анализа соотношений изотопов гафния и неодима ученые выяснили, что древнейшие участки континентальной коры в австралийском кратоне Пилбара образовались в основном из примитивной мантии. А изучение различий в изотопных сигнатурах инертных газов показало, что в современной мантии могут сохраняться неоднородности, относящиеся к периоду аккреции Земли из протопланетного вещества. Выяснить с помощью изотопных данных, как изменялся геодинамический режим на древней Земле, попытались Чжэнбинь Дэн (Zhengbin Deng) из Копенгагенского университета и его коллеги из Великобритании, Дании, Китая, США, Франции и Швейцарии. Для этого ученые с помощью усовершенствованных аналитических методов определили соотношения стабильных изотопов титана 49Ti/47Ti в 31 образце пород архейского и протерозойского возраста (от 3,8 до 2,0 миллиарда лет), в 21 образце современных базальтов океанических островов и в 24 образцах метеоритного вещества из хондритов разных типов. Вещество хондритов служит для моделирования состава примитивной мантии. Сопоставив полученные результаты с полученными ранее данными об изотопном составе титана в современных базальтах срединно-океанических хребтов и в древнейших континентальных породах, исследователи получили картину изменчивости соотношения 49Ti/47Ti. Выбор титана в качестве маркера геодинамических изменений не случаен. Этот литофильный элемент нерастворим в поверхностных средах и биологически нейтрален, поэтому его изотопный состав невосприимчив к процессам водной эрозии и метаболизма живых организмов. Кроме того, титан демонстрирует заметные различия в степени фракционирования в зависимости от того, насколько дифференцировано вещество в очаге плавления. Так, в кислых магматических резервуарах, образующихся в зонах субдукции или при внедрении в толщу коры мантийного расплава, в кристаллическую фазу поступает материал, обогащенный более тяжелым титаном-49, а в остатке плавления концентрируется титан-47. А вот при образовании очагов плавления ультраосновных пород мантии фракционирования практически не происходит. Начальной точкой в модели эволюции примитивной мантии послужило соотношение 49Ti/47Ti в хондритах. Средневзвешенное значение его отклонения от лабораторного эталона (δ49Ti) составило +0,053 ± 0,005 промилле. В древнейших ультраосновных вулканических породах положительная аномалия титана-49 лишь чуть-чуть выше: от +0,048 ± 0,005 промилле в 3,8-миллиардолетних гренландских метабазальтах до +0,044 ± 0,009 промилле в южноафриканских коматиитах возрастом 3,48 миллиарда лет. По мнению авторов исследования, их источники были близки по составу примитивной мантии и в очень малой степени деплетированы, то есть обеднены литофильными элементами. В период между 3,5 и 2,7 миллиарда лет назад в продуктах ультраосновного и основного вулканизма обнаружился заметный отрицательный сдвиг содержания титана-49: величина δ49Ti снизилась почти до современного уровня для максимально деплетированной мантии (+0,001 ± 0,004 промилле). Зато кислые породы ранних континентальных комплексов из формации Исуа (Гренландия), из района реки Акаста (Канада) и из кратона Каапвааль (Южная Африка) оказались обогащены титаном-49. Положительные аномалии в них распределились в пределах от +0,173 ± 0,030 до +0,570 ± 0,030 промилле. Чжэнбинь Дэн с коллегами предположили, что зарождавшийся в это время новый геодинамический режим, связанный с тектоникой плит, мог поддерживать перенос вещества и переработку древней коры, которая погружалась в локальных зонах субдукции, только в пределах верхней мантии. Расчеты показали, что для обеспечения изотопного сдвига более чем в 0,050 промилле нужно, чтобы в рециклинг коры было вовлечено менее 30 процентов всей массы примитивной мантии. Эта цифра согласуется с массой слоя, лежащего над сейсмической границей на глубине 660 километров. Возможно, связанный с ней фазовый переход препятствовал более глубокому проникновению тонущих слэбов. В результате этот слой становился все беднее литофильными элементами. Сходным высокодеплетированным составом обладают современные магмы, поступающие из верхней мантии в зоны спрединга в районах срединно-океанических хребтов ― так называемые нормальные базальты типа MORB (Mid-Ocean Ridge Basalts). После рубежа около 2,7 миллиарда лет назад ученые обнаружили некоторое повышение содержания изотопа 49Ti в вулканических породах и связали его с вовлечением нижней мантии, сохранившей примитивный состав, в процесс переноса вещества. Исследователи обратили внимание на содержание этого изотопа в современных базальтах другого типа ― OIB (Oceanic Island Basalts), ― которые образуются в зонах океанических островов над «горячими точками». Величина δ49Ti в них на 0,030–0,045 промилле выше, чем в нормальных базальтах типа MORB. По-видимому, в обогащение этих пород титаном-49 вносит свой вклад за счет глобальной конвекции глубокий резервуар вещества примитивной мантии, который сохраняется и в настоящее время, но истощает свой запас литофильных элементов. Ранее N + 1 рассказывал о том, что благодаря высокотемпературной древней мантии Земля в раннем архее могла быть практически полностью покрыта океаном. А еще мы сообщали, что ученые с помощью анализа цирконов уточнили модель образования древнего суперконтинента Нуна.