Ученые из двух исследовательских групп показали, что ядро никеля-78 действительно является «дважды магическим». Для этого физики из одной группы светили на ядра 79Cu гамма-лучами, а из другой — измеряли массу ядер изотопов 75-79Cu. Статьи исследователей одновременно опубликованы в Physical Review Letters.
В ядерной физике важную роль играют так называемые «магические числа» — числа, при которых нейтронная или протонная (или обе сразу) оболочки в атомах оказываются полностью заполненными. Для протонов магическими являются числа Z = 2, 8, 20, 50, 82, 114, 126, для нейтронов — числа N = 2, 8, 20, 28, 50, 82, 126. В атомах с такими числами энергия связи оказывается гораздо больше, чем энергия присоединения еще одного нуклона, поэтому они отличаются большей стабильностью по сравнению со своими «соседями» в таблице нуклидов. Особенно устойчивыми являются дважды магические ядра, в которых одновременно заполнены и протонная, и нейтронная оболочки — например, ядра 16O или 208Pb.
Однако «магические числа» являются только некоторым приближением к реальности, и в действительности не все ядра с такими числами показывают повышенную стабильность. Например, в некоторых экспериментах ученые наблюдали, что «магичность» чисел Z = 20 и N = 28 исчезает, и они заменяются числами Z = 14, 16 и N = 32, 34 соответственно. Более того, в некоторых случаях возникают «острова инверсии», в которых порядок ядерных оболочек расположен нестандартно, из-за чего их стабильность тоже находится под вопросом. Сейчас внимание исследователей сфокусировано на проверке «магичности» чисел Z = 20, N = 58, которые соответствуют изотопу 78Ni. До сих пор этот изотоп не был получен в лаборатории в достаточных для исследования его свойств количествах, поэтому ученым приходится искать обходные пути.
В данных двух работах физики по-разному обошли эту проблему. В первой группе, возглавляемой Луи Оливье (Louis Olivier), ученые исследовали с помощью гамма-спектроскопии ядра 79Cu, полученные в результате бомбардировки протонами ядер изотопа 80Zn. Одновременно с этим они численно рассчитали предполагаемый спектр с помощью метода Монте-Карло в оболочечной модели ядра 79Cu, предполагая, что его можно представить как ядро 78Ni с дополнительно добавленным протоном. В случае если никель-78 является «дважды магическим», такое приближение должно хорошо работать, поскольку энергия связи нуклонов в нем должна быть намного больше, чем энергия связи дополнительного протона. И действительно, полученные двумя способами спектры совпали. Из этого авторы сделали вывод, что никель-78 в самом деле является «дважды магическим».
С другой стороны, ученые из CERN под предводительством А. Велкера (A. Welker) исследовали распределение масс богатых нейтронами ядер изотопов меди 75-79Cu, пойманных в ловушки Пеннинга. Они также численно смоделировали предполагаемое распределение с учетом недавно разработанного способа описания взаимодействия в ядре PFSDG-U и более старого JUN45. Более новый способ лучше описывал экспериментальные данные и указывал на дважды магическую структуру ядра 78Ni. Кроме того, авторы отмечают, что полученное ими распределение масс изотопов свидетельствует о существовании нового острова инверсии в диапазоне Z < 28.
Тем не менее, это только косвенные доказательства «магичности» никеля-78. Следующим шагом в доказательстве этого факта было бы прямое измерение массы ядра или его непосредственная гамма-спектроскопия. В настоящее время экспериментально удалось измерить только период полураспада этого элемента, который составил около 120 миллисекунд, что, кстати, тоже может считаться аргументом в пользу «магичности».
Ранее мы писали о том, как физики нашли «пузырек» в центре ядра кремния-34, обладающего магическим числом нейтронов.
Дмитрий Трунин
Обычно рентгеноструктурный анализ требует сотен тысяч атомов
Химики из США, Китая и Франции использовали синхротронное излучение для характеризации отдельных ионов железа и тербия в составе комплексных соединений, нанесенных на поверхность золота. Ученые смогли детектировать электронные переходы этих атомов только тогда, когда тонкий металлический детектор располагался точно над атомами металлов. Исследование опубликовано в журнале Nature. Синхротронное излучение позволяет проводить рентгеноструктурные исследования на очень небольших образцах вещества, содержащих около 104 атомов. Но если для регистрации фотоэлектронов использовать очень тонкий металлический детектор, разрешение можно повысить еще сильнее — до всего нескольких десятков атомов в образце. Тем не менее детектировать сигналы от одиночных атомов ученые не умели до сих пор. Но недавно физики и химики под руководством Фолькера Розе (Volker Rose) использовали синхротрон APS в Аргоннской национальной лаборатории для проведения рентгеновского анализа отдельных атомов. Для этого ученые приготовили комплексы железа и тербия с замещенными пиридиновыми лигандами на поверхности золота. Первый эксперимент с синхротронным излучением ученые провели на поверхности с комплексами железа. Они разместили детектор на большом расстоянии (пять нанометров) от образца, при котором невозможно туннелирование фотоэлектронов между поверхностью и детектором. В полученной зависимости энергии фотоэлектронов от тока в детекторе химики наблюдали сигналы от электронных переходов всех ионов железа, расположенных вблизи детектора. В следующем эксперименте физики расположили детектор намного ближе к образцу — так, чтобы фотоэлектроны могли туннелировать. Во время эксперимента ученые обнаружили, что при движении детектора сигналы переходов меняются. Причем сигналы, соответствующие электронным переходам иона железа, появлялись только тогда, когда детектор располагался точно над ионом железа. Тот же самый эксперимент удалось провести и с комплексом тербия. И, как и в случае комплексов железа, сигналы от электронных переходов тербия возникали только при точном расположении детектора над его катионами. Далее ученые решили применить синхротронное излучение для анализа электронной структуры комплексов. Для этого они использовали спектроскопию рентгеновского поглощения в ближней к краю области и проанализировали тонкую структуру полученных сигналов. В результате оказалось, что железо в комплексе имело степень окисления +2, а тербий — +3. Кроме того, удалось выяснить, что 3d-орбитали иона железа взаимодействуют с лигандами, а 4f-орбитали тербия — нет. Так ученые показали, что синхротронное излучение и правильно спроектированный детектор позволяют проводить рентгеноструктурные исследования на отдельных атомах. При этом можно узнать не только то, где они расположены, но и выяснить детали их электронной структуры. Недавно мы рассказывали о том, как сибирские ученые создали клистрон для Сибирского кольцевого источника фотонов (СКИФ). А прочитать подробнее про историю рентгеноструктурного анализа можно в нашем материале «Деплатформинг структур».