Изменение валентности редкоземельных элементов в сплавах со смешанной валентностью при повышении температуры сопровождается электронным топологическим переходом, при котором электроны меняют локализованное состояние на подвижное. К такому выводу пришли американские ученые, изучив с помощью рентгеновской фотоэлектронной спектроскопии сплав иттербия и алюминия. Работа опубликована в Nature Communications.
Понятие валентности — количества связей, которое может образовывать тот или иной элемент, — является одним из базовых в химии. И если в простых отдельных молекулах валентность определяется однозначно, то в химических комплексах и в кристаллических веществах определить валентность бывает несколько сложнее, потому что не всегда можно точно определить количество и направленность образованных связей.
Сейчас из-за неоднозначности определения валентности чаще используются термины «степень окисления» (описывает электронное состояние атома) и «координационное число» (описывает количество ближайших атомов-соседей). Наиболее актуальна проблема определения валентности и связи ее с электронным состоянием стоит для материалов, в которых один из элементов проявляет смешанную степень окисления, которая может при этом изменяться при понижении или повышении температуры. Однако до настоящего дня было не очень понятно, что при изменении степени окисления происходит в сплаве с теми электронами, которые освободились и не участвуют больше в образовании химических связей.
В своей работе химики из США изучали модельную систему — сплав алюминия и иттербия состава YbAl3, в котором атом иттербия находится в состоянии со смешанной валентностью. В таком сплаве из-за наличия упорядоченных систем магнитных примесей происходит снижение сопротивления, и иттербий проявляет две степени окисления: +2 и +3, — в которых на внешнем электронном уровне 4f находится 14 и 13 электронов, соответственно. Известно, что при снижении температуры от комнатной до 30 кельвинов (-243 градуса Цельсия) происходит уменьшение средней валентности примерно на 0,05. Но что при этом происходит с электронной структурой внутри кристалла, измерить не удавалось из-за сложностей при получении монокристалла с поверхностью достаточного качества. В новой работе для решения этой проблемы химики использовали тонкую пленку сплава, нанесенного на подложку с помощью молекулярно-лучевой эпитаксии, и исследовали ее с помощью рентгеновской фотоэлектронной спектроскопии с угловым разрешением.
Оказалось, что в таком материале часть электронов локализована и находится вблизи атомов иттербия, а часть электронов — подвижная и может находиться в нелокальном состоянии, перескакивая между атомами. Изменение силы взаимодействия между электронами разных типов при изменении температуры и давления может приводить к флуктуациям валентности иттербия. Электронная структура атома иттербия представляет из себя облако электронов вокруг ядра, размер которого увеличивается при понижении температуры. В обратном пространстве это выглядит как постепенное уменьшение заселенности соответствующего маленького электронного кармана.
Это приводит к тому, что постепенно увеличивается подвижность электронов на низкоэнергетических уровнях 4f, при этом увеличивается время жизни этих электронов и площадь соответствующего пика в спектре. Это означает, что смена валентности при изменении температуры (или давления) сопровождается сильным перестроением электронной структуры иттербия и электронным топологическим переходом.
По словам авторов работы, полученные результаты свидетельствуют о сильном влиянии изменения валентности на электронную структуру внутри металлических сплавов с подобными свойствами. Ученые ожидают, что в будущем эти данные смогут использоваться и для управления электронными свойствами металлических сплавов с повышенным сопротивлением.
В органических молекулах определить валентность атомов углерода значительно проще, но при этом она очень редко изменяется и практически для всех соединений равна четырем. Сейчас известно только несколько соединений, в которых углерод проявляет валентность пять, а совсем недавно ученым впервые удалось получить органическое соединение, в котором углерод связан сразу с шестью другими атомами.
Александр Дубов