Чтобы зарегистрировать частицы «легкой» темной материи, можно использовать испарение жидкого гелия при низких температурах. Ученые из университета Брауна предложили схему такой установки и показали, что с ее помощью можно найти вимпы с энергиями порядка одного мегаэлектронвольта. Статья опубликована в Physical Review Letters.
Несмотря на то, что темная материя гравитационно взаимодействует с привычным для нас веществом, и многие косвенные признаки указывают на ее существование (например, кривые вращения галактик или гравитационное линзирование на скоплениях галактик), напрямую ученые до сих пор ее не обнаружили. Одним из вероятных кандидатов на роль части холодной темной материи являются вимпы (WIMP, weakly interacting massive particles) — гипотетические частицы, которые могут влиять на обычную материю только через слабое или гравитационное взаимодействия.
Обычно считается, что масса вимпов находится в диапазоне от 1010 до 1012 электронвольт. Однако частиц темной материи с такими массами до сих пор найдено не было. Поэтому были разработаны теоретические модели, из которых следует, что масса гипотетических частиц может быть меньше 10 гигаэлектронвольт, и проводятся эксперименты по поиску легких вимпов. Для этого используются электронные возбуждения полупроводников, сцинтилляции прозрачных кристаллов или тепловой отклик мишени, возникающие при взаимодействии частиц мишени и вимпов. Во всех этих методах порог чувствительности составляет около одного электронвольта, что соответствует вимпам с энергиями порядка сотен мегаэлектронвольт. Это требует разработки новых экспериментов, в которых можно засечь следы легкой темной материи.
Авторы статьи предлагают схему эксперимента, аналогичного некоторым способам поиска нейтрино. Суть его заключается в том, что при взаимодействии вимпа или нейтрино с атомами жидкого гелия, находящегося в сверхтекучем состоянии, образуются квазичастицы — фононы и ротоны. Если температура гелия достаточно мала (меньше 0,1 Кельвина), помехами — образованием квазичастиц из-за тепловых флуктуаций можно пренебречь. Эти квазичастицы распространяются в жидкости, причем эффектами рассеяния и распада квазичастиц также можно пренебречь, если их энергия меньше 0,7 миллиэлектронвольт. Наконец, когда квазичастица достигает поверхности жидкости, в результате квантового испарения (quantum evaporation) из нее вырывается атом гелия.
Затем вырванный из жидкости атом гелия ускоряется с помощью сильного электрического поля (несколько вольт на ангстрем), создаваемого острым наконечником туннельного микроскопа, а момент его попадания на наконечник регистрируется как кратковременное увеличение тока в сети, соединяющей катод и анод. Эффективный радиус захвата частицы катодом составляет около пятисот нанометров, поэтому ученые предлагают помещать над поверхностью жидкости большой массив таких наконечников. По оценкам ученых, для эффективного детектирования отдельных атомов расстояние между наконечниками в одном массиве должно составлять до двадцати микрометров, а расстояние между самими массивами — до одного миллиметра.
По словам физиков, с помощью такой экспериментальной установки можно зарегистрировать отдельные вимпы с массой около 0,6 мегаэлектронвольт. Несмотря на то, что они не смогли оценить чувствительность, разрешающую способность по времени и энергии, а также другие важные характеристики предложенной ими схемы, авторы считают, что их идеи могут оказаться очень полезными для регистрации легких вимпов. Также ученые отмечают, что подобные детекторы для частиц темной материи можно построить на основе других сред, в которых длина пробега квазичастиц достаточно велика, чтобы мы могли регистрировать их рождение в больших объемах вещества. Все-таки частицы темной и «обычной» материи взаимодействуют очень редко.
Напоминаем, что в этот вторник, 31 октября, физики впервые отмечали день темной материи. Узнать о том, как и зачем ученые ищут темную материю, можно прочитать в посвященном этому дню интервью с заведующим отделом теоретической астрофизики Астрокосмического центра ФИАН Андреем Дорошкевичем.
Дмитрий Трунин
Пока эти результаты вызывают сомнения
Физики из Южной Кореи обнаружили у апатита свинца, в котором часть атомов свинца замещена медью, сверхпроводящие свойства при комнатной температуре. Ученые утверждают, что полученный методом твердотельного синтеза материал — первый сверхпроводник при комнатной температуре и атмосферном давлении. Температура перехода разрушения сверхпроводящего состояния достигает в нем 127 градусов Цельсия, пишут исследователи в препринтах (1, 2) на arXiv.org. Впрочем, некоторые физики уже выразили сомнения в обоснованности опубликованных результатов. Сверхпроводимость — эффект, при котором у некоторых материалов электрическое сопротивление становится нулевым, — обычно наблюдается при экстремально низких температурах. Лишь в конце XX века удалось получить материалы, обладающие высокотемпературной сверхпроводимостью. Первым материалом с критической температурой (Тс) выше точки кипения азота (-195,8 градуса Цельсия) был оксид итрия-бария-меди. Только в 2010-х годах были открыты новые типы сверхпроводников, способных сохранять свои свойства при температурах, более близких к комнатной. При сверхвысоких давлениях (более миллиона атмосфер) сверхпроводящие свойства возникают и у гидридов многих элементов, например, у сероводорода. Недавно физики подтвердили наличие сверхпроводимости гидрида лантана LaH10 при −23 градусах Цельсия. Уже в этом году американские ученые получили сверхпроводимость гидрида лютеция, легированного азотом, при комнатной температуре и умеренно экстремальном давлении. Впрочем, другие группы воспроизвести их результаты пока не смогли. Группа корейских физиков под руководством Ли Сукбэ (Sukbae Lee) из Центра исследований квантовой энергии обнаружила, что в материале на основе апатита свинца Pb10-xCux(PO4)6O (доля x составляет от 0,9 до 1,1) сверхпроводящие свойства наблюдаются при комнатной температуре и атмосферном давлении, то есть без необходимости сжимать образец до сотен миллионов атмосфер. Материал LK-99 получен с помощью твердотельного синтеза в герметичной трубке, вакуумированной до 1,3 × 10-6 атмосфер. Анализ полученного порошка LK-99 при помощи рентгеновской дифракции показал, что величина постоянной его кристаллической решетки на 0,48 процентов меньше, чем у апатита свинца. Ученые связали это изменение с частичным замещением атомов свинца на более компактные по размеру атомы меди. Авторы исследования полагают, что это привело к возникновению внутренних механических напряжений в кристалле, которые в конечном итоге и стали причиной сверхпроводимости. Наличие сверхпроводимости в материале ученые подтвердили, наблюдая левитацию образца в магнитном поле за счет эффекта Мейснера, а также исследуя зависимость удельного сопротивления вещества от температуры. Физики определили, что критическая температура (Тс), при которой образец LK-99 терял сверхпроводящие свойства, составляет от 104 до 127 градусов Цельсия. Ниже этой температуры ученые выделили несколько характерных участков. В диапазоне до примерно 60 градусов Цельсия удельное сопротивление практически равнялось нулю с незначительными шумовыми сигналами. При более высоких температурах наблюдался плавный рост удельного сопротивления. Авторы интерпретировали этот рост как локальные нарушения сверхпроводимости в отдельных областях поликристаллического образца. Если результаты корейских физиков подтвердятся, LK-99 может стать первым веществом со сверхпроводимостью при комнатной температуре и атмосферном давлении. Впрочем, исследования сверхпроводимости при комнатной температуре часто вызывают вопросы у научного сообщества, даже если добираются до публикации в рецензируемых журналах. Например, после проверок в 2022 году из Nature отозвали статью американских исследователей, которые нашли сверхпроводимость при 17 градусах Цельсия в смеси сероводорода, метана и водорода. Технические вопросы, из-за которых отозвали статью о сверхпроводимости углеродистого сероводорода, возникли и к этой работе. Так, сомнения в обоснованности выводов корейских ученых высказал профессор химического факультета МГУ Евгений Антипов, который вместе с Сергеем Путилиным открыл в 1993 году новое семейство ртутьсодержащих сверхпроводящих купратов. Один из них — HgBa2Ca2Cu3O8+x — на настоящий момент имеет рекордную подтвержденную на данный момент критическую температуру, −138 градусов Цельсия. В разговоре с N + 1 химик прокомментировал открытие коллег: «Я не думаю, что эта статья выйдет в каком-либо серьезном журнале, потому что она не отвечает принятым стандартам. У меня вызывает большие сомнения возможность реализации сверхпроводимости в соединении с такой формулой. Это оксофосфат двухвалентного свинца, а двухвалентный свинец отличается тем, что у него свободные электроны локализованы, они не могут переходить в зону проводимости — а значит они будут локализованы на катионах свинца». Вопросы у Антипова вызвала и возможность замещения двухвалентного свинца на двухвалентную медь в том синтезе, который проводили корейские ученые: «Представленные данные не убеждают в возможности такого замещения, так как в образце присутствует примесь сульфида меди Cu2S. С точки зрения кристаллохимии это выглядит не очень обоснованно, а с точки зрения эксперимента — они получили образец с примесями, при этом примеси там много. Поэтому говорить, что медь находится в позиции свинца, когда она присутствует в виде примесей — не обосновано». Физики продолжают изучать различные вещества и способы достичь высокотемпературной сверхпроводимости. Например, ранее мы писали, как сверхпроводимость ищут даже в радиоактивных веществах. О том как механическое напряжение помогает получить состояние сверхпроводимости в графене читайте в нашем материале «Тонко закручено».