В результате электрохимического окисления расплавленный металл на нагретой поверхности может проявлять особый тип поверхностной неустойчивости. Группа американских ученых показала, что этот эффект приводит к растеканию капли и образованию двумерных фрактальных структур. Результаты работы опубликованы в Physical Review Letters.
Возникновение на поверхности жидкости нескольких сил, близких друг к другу по величине, может приводить к возбуждению неустойчивостей и изменению формы поверхностей. Такими противодействующими друг другу силами в разных случаях могут быть капиллярные, вязкие или гравитационные силы. Один из типов таких неустойчивостей является неустойчивость Саффмана — Тейлора. Она возникает, если в более вязкую жидкость попадает капля менее вязкой жидкости и приводит к образованию так называемых «вязких пальцев». Такой эффект можно наблюдать, например, при прокачке нефти через воду, и для повышения эффективности процесса его стремятся избежать.
Для жидкого металла из-за очень высокой энергии поверхностного натяжения формирование вязких пальцев не характерно. Однако оказалось, что похожие неустойчивости на поверхности жидкого металла можно вызвать, если приложить к поверхности металла электрическое напряжение.
Для изучения такого эффекта группа физиков из Университета штата Северной Каролины рассмотрела каплю жидкого сплава галлия и индия. В своем эксперименте каплю расплава объемом от 10 до 100 микролитров авторы работы помещали на плоскую поверхности и прикладывали к ней напряжение до 6 вольт.
Оказалось, что, в зависимости от приложенного напряжения и размера капли, возможно четыре различных режима. Если при очень большом и очень маленьком напряжении капля сохраняет свою круговую форму, то при промежуточных значениях возможно образование двух более сложных режимов, в одном из которых формируется фрактальная структура.
Существование этих режимов ученые связали с изменением химического состава поверхности капли. Электрическое напряжение приводит к электрохимическому окислению поверхности расплава. Образующийся оксидный слой резко снижает поверхностное натяжение металла и работает как поверхностно-активное вещество.
Если слой оксида достаточно тонкий, то одновременные процессы растекания и окисления приводят к возникновению неустойчивостей на линии раздела и образованию «пальцев», которые со временем истончаются и образуют самоподобные фрактальные структуры. Фрактальная размерность таких образований составила 1,3. Для классических вязких пальцев фрактальная размерность ниже, то есть найденный тип неустойчивостей является принципиально новым и ранее не наблюдался.
Если же напряжение слишком большое, то образуется очень толстый слой оксида, который тормозит дальнейшее окисление и не приводит к образованию пальцевых неустойчивостей. Таким образом ученым удалось показать, что с помощью оксидного слоя на поверхности металла можно как возбуждать неустойчивости, так и полностью подавлять их. Это дает возможность с помощью электрохимических методов управлять растеканием и формой капель металла.
Анализ фрактальных структур используется не только при изучении физических систем, но используется и в других областях. Например, с помощью фрактального анализа удалось объяснить популярность теста Роршаха. А структура некоторых литературных произведений и вовсе является мультифрактальной.
Александр Дубов
Для этого их разнесли более чем на 30 метров
Физики из Швейцарской высшей технической школы Цюриха с коллегами из нескольких стран смогли впервые провести проверку неравенств Белла без лазеек с помощью сверхпроводящих кубитов. Для этого они разнесли криостаты на 30 метров и добились очень короткого (не более 50 наносекунд) времени считывания. Все вместе это позволило гарантировать, что никакой гипотетический скрытый сигнал не смог бы повлиять на результаты проверки. Исследование опубликовано в Nature. Эйнштейну не нравилась вероятностная интерпретация квантовой механики. Вместе с Подольским и Розеном он в 1935 году написал статью с описанием парадокса — мысленного эксперимента с двумя разнесенными частицами, квантовая связь между которыми якобы нарушала принцип причинности. В 1964 году Джон Белл предложил математический способ, как с помощью неравенств доказать, на самом ли деле квантовая механика управляется вероятностными законами, или в ее основе лежат некие, еще не понятые физиками скрытые параметры. Экспериментальная проверка неравенств Белла началась лишь спустя десятилетия, подтвердив ошибочность теории скрытых параметров. Подробнее об этой истории мы писали в материале «Бог играет в эти игры», посвященному Нобелевской премии по физике 2022 года. Проверка неравенств Белла — это не единомоментный процесс. Каждая следующая экспериментальная реализация оставляла небольшие лазейки, которыми можно было бы объяснить опыт, не отказываясь от локальной теории скрытых переменных. Но с 2015 года физикам наконец-то удалось закрыть их все, сначала с помощью дефектов в алмазе, затем фотонов и плененных атомов. Теперь же очередь дошла и до проверок без лазеек на сверхпроводящих кубитах. Это случилось благодаря Зимону Шторцу (Simon Storz) из Швейцарской высшей технической школы Цюриха и его коллегам из Испании, Канады, США, Франции и Швейцарии. Им удалось провести проверку для кубитов, разнесенных более, чем на 30 метров. Благодаря такому большому расстоянию и высокой скорости считывания физики показали, что никакой гипотетический скрытый сигнал не смог бы повлиять на исход проверки, даже двигаясь от одного кубита к другому на световой скорости. С самых первых белловских экспериментов физики находили и закрывали множество лазеек. Например, недостатком эксперимента на фотонах долгое время было малое число запутанных пар. Из-за этого всегда можно было утверждать, что набранная статистика отражает лишь свойства некоторого подмножества от полного множества, в котором неравенства выполняются. Однако в конечном счете гипотезу о скрытых параметрах можно отвергнуть, если гарантировать, что никакой скрытый сигнал — во всяком случае, на световой или досветовой скорости — не успеет передаться от одного измерения до другого. Для этого кубиты должны быть достаточно далеко, а время считывания должно быть достаточно коротким. Наконец, физики обязаны накопить приличную статистику измерений, прежде чем делать выводы. Решению этих технических задач для сверхпроводящей платформы была посвящена работа авторов. Такие кубиты основаны на способности тока находится в суперпозиции направлений течения в сверхпроводящем контуре. Для их запутывания необходимо передавать между кубитами микроволновые фотоны, причем канал их передачи также должен находится при сверхнизких температурах. Ученые справились со своей задачей, разместив свои криостаты в подземных помещениях. Ключом к успеху стало достижение времени считывания, равного 50 наносекундам, со степенью совпадения 98 процентов. Расчеты показали, что, достаточно будет разделить события проверки кубитов 33 метрами. В этом случае у физиков остается запас в 10 наносекунд, которого достаточно, чтобы закрыть лазейку — скрытый сигнал не успеет повлиять на результат. Чтобы минимизировать разрушение запутанности, переносимой микроволновыми фотонами по волноводу, физики упаковывали последний в 30-метровую трубу, в которой поддерживали температуру 50 милликельвин. Сами кубиты содержались при температуре в 20 милликельвин. Всего ученые провели четыре последовательных эксперимента, в каждом из которых было более миллиона тестов. В результате статистический параметр неравенства оказался равен S = 2,0747 ± 0,0033 — другими словами, неравенства Белла нарушаются со значимостью в 22 стандартных отклонения. Помимо самого факта белловской проверки без лазейки, работа авторов прокладывает технологический путь к построению распределенных квантовых сетей на основе сверхпроводящих кубитов. Недавно мы рассказывали об аналогичных успехах для ионных кубитов — там квантовую запутанность передали на 230 метров.