Международная группа физиков сообщила о первых результатах полноценной работы CUORE, нейтринного детектора, основная цель которого — поиск двойных безнейтринных бета-распадов ядер теллура. Проанализировав данные всего двух месяцев работы детектора, физикам удалось установить новые ограничения на майорановскую природу нейтрино — рекордно сильные для подобных экспериментов. По данным ученых период полураспада теллура-130, связанного с аннигиляцией нейтрино, составляет 2,7×1021 лет. Исследование направлено к публикации в журнал Physical Review Letters (препринт), кратко о нем сообщает пресс-релиз Национальной лаборатории имени Лоуренса Беркли.
Одна из нерешенных проблем физики — преобладание во Вселенной материи над антиматерией. Согласно одной из гипотез важную роль в этом расхождении могут играть нейтрино — легковесные лептоны, способные пролетать сквозь всю толщу Земли не взаимодействуя с ней. Эти частицы могут оказаться майорановскими, то есть являться античастицами для самих себя. Простейшее следствие этого — два нейтрино могут аннигилировать друг с другом. Если это предположение подтвердится, то оно будет значить, что мы неверно оцениваем соотношение материи и антиматерии Вселенной.
Обнаружить взаимную аннигиляцию двух нейтрино можно в процессе, который называется двойным бета-распадом. В каждом бета-распаде один из нейтронов ядра превращается в протон, испуская нейтрино, электрон и гамма-квант. В двойном бета-распаде два нейтрино могут аннигилировать между собой — тогда наблюдатель не увидит ни одного нейтрино в распаде. Искать подобные события удобно с помощью приборов, содержащих большое количество изотопов, испытывающих двойной бета-распад.
В 2001 году нейтринный эксперимент Гейдельберг-Москва статистически зафиксировал безнейтринный двойной бета-распад германия-76. Позднее этот результат был опровергнут. На сегодняшний день существует несколько крупных детекторов с различными активными средами — ксенон-136, теллур-130, кадмий-116 и так далее. Самое серьезное ограничение на безнейтринные распады сейчас установлено на ксеноновых детекторах: период полураспада ксенона-136 с аннигиляцией двух нейтрино составляет 1026 лет — в квадриллион раз больше возраста Вселенной.
Детектор CUORE — крупнейший и наиболее чувствительный эксперимент, работающий на изотопе теллура-130. Он состоит из 19 «башен» из оксида теллура, по 52 кубических кристалла в каждой. Сборка охлаждена до температуры всего на одну сотую градуса выше абсолютного нуля — за это прибор и прозвали «самым холодным кубометром во Вселенной». В таком состоянии даже небольшие колебания температуры сильно влияют на электропроводность материала. По величине этих колебаний ученые с высокой точностью отслеживают, какая энергия была рассеяна в кристалле. Подробнее о устройстве и методах охлаждения CUORE можно прочитать в нашей предыдущей новости. Ранее физики уже запускали детектор — тогда статистика набиралась лишь одной из 19 башен на протяжении двух лет. Это позволило продемонстрировать технологию, лежащую в основе установки.
Новый двухмесячный пуск задействовал все 19 башен оксида теллура — это позволило набрать статистику для почти такого же ограничения на частоту процесса, как и весь предыдущий двухгодичный пуск. Физики объединили данные двух пусков, чтобы получить объединенный результат: период полураспада в 2,7×1021 лет. Другой важный результат эксперимента — первая демонстрация работоспособности полноценного детектора.
На следующем этапе ученые смогут дополнительно улучшить ограничения на безнейтринные распады теллура. Ожидается, что за следующие пять лет работы детектор наберет примерно в сто раз больше данных, чем за прошедшие два месяца. Чувствительность детектора позволит обнаружить безнейтринный распад с периодом полураспада до 9,5×1025 лет.
Владимир Королёв
При каждом нажатии он меняет структуру, не забывая о предыдущих изменениях
Физики создали механический метаматериал с эффектом памяти, который можно использовать как примитивный счетчик до десяти. Этот материал представляет собой массив из десяти деформируемых ячеек, каждая из которых может находиться в одном из двух состояний, меняющихся при нажатии. При этом предыдущих изменений материал не забывает. В будущем счетчики с подобной конструкцией могут оказаться полезными для мягкой робототехники и умных сенсоров, пишут ученые в Physical Review Letters. Свойства метаматериалов определяются в первую очередь не химическим строением, а геометрической микроструктурой (например, расположением слоев различных веществ или периодичностью атомной решетки) и для них характерны аномальные значения различных физических параметров. Например, если растягивать в продольном направлении ауксетики, обладающие отрицательным значения коэффициента Пуассона, то в перпендикулярном направлении они расширяются (в то время как обычные материалы сжимаются). Ученые работают и над метаматериалами, обладающими памятью: они запоминают воздействие и реагируют на него сменой физических свойств. Например, если нагреть полимер с памятью формы, он вернет исходную (до деформации) форму. Однако такие материалы запоминают лишь начальное состояние, запомнить несколько последовательно меняющихся состояний им не под силу. Физики Мартин ван Хеке (Martin van Hecke) и Леннард Квакернак (Lennard Kwakernaak) из Лейденского университета разработали метаматериал, у которого память о предыдущих деформациях не сбрасывается. Храня информацию о предыдущих воздействиях, такой материал фактически способен считать: он запоминает каждое нажатие, последовательно меняя свою структуру. Ученые сделали материал на 3D-принтере из стоматологической силиконовой смеси для слепков. Он состоит из отдельных ячеек, каждая из которых включает в себя две балки: одну тонкую и одну толстую. Тонкая балка может изгибаться либо влево, либо вправо. Толстая балка служит перегородкой, отделяя ячейки материала друг от друга. Значение критической деформации для толстой и тонкой балок различны, поэтому одного нажатия достаточно для сгибания тонкой балки и частичной деформации толстой. Наличие толстой балки также не дает деформироваться тонкой балке в соседней ячейке. Материал считает следующим образом. В начальном состоянии {000...0} все тонкие балки изогнуты влево. При каждом изменении направления изгиба тонкой балки 0 меняется на 1. Превышая первым нажатием критическую деформацию тонкой балки, систему выводят в состояние {100...0}. После каждого следующего нажатия крайняя слева балка изгибается в правую сторону. Толстая балка при этом не деформируется, но за счет конструкции сгибает следующую тонкую. То есть система копирует состояние изогнутой вправо тонкой балки (1) с каждым нажатием на одну ячейку правее. В терминах нулей и единиц, подсчет можно записать как {000...0} → {100...0} → {110...0}→··· → {111...1}. До скольки может досчитать материал, зависит от числа ячеек и начального состояния системы, память метаматериала сохраняется до конца подсчета. По словам авторов работы, такой метаматериал с эффектом памяти фактически представляет собой простейший компьютер, который можно запрограммировать на счет с любого начального числа. Его работу ученые проверили, фиксируя значения критических деформаций и начиная счет с различных начальных чисел. Материаловеды отмечают, что такой счетчик из метаматериала можно изготовить и из других веществ, например каучука или полиуретана. В будущем из аналогичных ячеек ученые планируют собирать и двумерные массивы, на которых можно будет проводить более сложные вычислительные операции Метаматериалы хороши не только в счете: они помогают решать уравнения со скоростью света, а еще их можно превратить в непрерывные кристаллы времени.