Китайские ученые смогли произвести обмен квантовой запутанности между фотонами из квантово-запутанных пар, разделенных оптоволокном длиной более 100 километров. Этот результат превосходит по расстоянию все предыдущие аналогичные попытки и расширяет возможности квантовой телепортации с обменом запутанности до междугородных масштабов. Результаты исследования опубликованы в Optica.
Квантовая запутанность — способность двух фотонов сохранять взаимосвязанное квантовое состояние. При изменении квантового состояния одного из фотонов моментально изменяется состояние и второго. Примечательно, что при сохранении когерентной связи между двумя фотонами, запутанность можно наблюдать для любого расстояния между ними. Это свойство ученые предложили использовать для механизмов квантовой телепортации — моментальной передачи квантовой информации на расстоянии. Для того, чтобы избежать декогеренции фотонов и потери запутанного состояния, была предложена концепция квантового повторителя. В основе этой концепции лежит использование обмена запутанности (entanglement swapping) между фотонами из двух независимых квантово-запутанных пар. Это приводит к тому, что информация о квантовом состоянии может передаваться даже между двумя фотонами, которые находятся на большом расстоянии друг от друга и изначально не были запутаны между собой.
Принципиальная возможность осуществлять квантовую телепортацию с помощью такого обмена была показана как для спутниковой, так и для оптоволоконной передачи фотонов на расстоянии около 100 километров. Однако все эти механизмы осуществлялись только для обмена между фотонными парами, которые были получены с помощью одного источника. Для того, чтобы действительно экспериментально подтвердить обмен запутанности, нужно как минимум два независимых источника запутанных фотонов и отсутствие причинно-следственной связи между событиями, которые приводят к изменению квантового состояния фотонов.
В своем новом исследовании китайские ученые использовали два источника запутанных фотонов с частотой 1 гигагерц, и провели полевой тест по обмену в оптоволоконном кабеле длиной 103 километра. 77 километров этого кабеля находились внутри лаборатории, 25-километровый участок пролегал под землей и еще примерно один километр кабеля находился на открытых участках, подвергаясь воздействию внешних шумов.
Эксперимент осуществлялся таким образом, что источники и детекторы сигнала были установлены в трех точках. Два независимых источника в точках А и B генерировали оптический сигнал частотой 1 гигагерц. Часть из полученных фотонов оставалась в спиральном оптическом волокне около источника, а другая часть — посылалась без потери когеренции в точку C (желтые линии на схеме). После этого с помощью коротких лазерных импульсов, которые посылались из точки C в точки A и B сигналы синхронизировались (фиолетовые линии на схеме), связывая состояния тех фотонов, которые остались около источника.
В результате эксперимента ученым удалось произвести обмен запутанного состояния между фотонами из точек A и B. Потери сигнала при пересылке составляли не более 16 децибел, что примерно на 20 децибел превосходит предыдущие эксперименты. Таким образом ученые показали, что комбинируя участки спирального и разветвленного оптического кабеля, можно создавать системы квантовой телепортации с обменом запутанности, в которой точки разнесены между собой на 100 километров.
Обмен запутанности — крайне важная задача для создания квантовых повторителей и увеличения длины квантовой телепортации. Недавно ученые смогли создать систему, в которой фотоны из двух независимых запутанных пар могут обмениваться еще и орбитальным угловым моментом, что резко увеличило количество возможной для передачи информации. А максимальное расстояние квантовой телепортации без обмена запутанности уже превышает тысячу километров.
Александр Дубов
Для этого физики косо сталкивали восемь плазменных струй
Британские и американские физики создали лабораторный аналог аккреционного диска, который возникает в космосе при падении газа на массивные объекты, например, черные дыры. В новом опыте, в отличие от предыдущих исследований, отсутствовали какие-либо стенки или ограничения для потоков — их закручивание происходило за счет нецентрального столкновения восьми плазменных струй. Плазменное кольцо продемонстрировало стабильность, что позволит в будущем исследовать роль магнитного поля в аккреции вещества. Исследование опубликовано в Physical Review Letters. Аккреционные потоки газа вокруг массивных тел встречаются во Вселенной довольно часто. Свет, испускаемый аккреционным диском, может свидетельствовать в том числе и о существовании черной дыры. Поведение газа, падающего на черную дыру, вызывает у исследователей множество вопросов, ответы на которые они добывают преимущественно теоретически. Лабораторные попытки понять физику аккреционного диска тоже существуют. Для этого физики создают потоки водно-глицериновых растворов или металлических расплавов в магнитном поле. Другой способ основан на подаче электрического тока на края холловской плазмы, удерживаемой постоянными магнитами. Недостатком всех этих методов остается наличие жестких границ, которые отсутствуют в космических процессах и искажают моделирование. Группа физиков под руководством Сергея Лебедева (Sergei Lebedev) из Имперского колледжа Лондона вместе с коллегами из США провели эксперимент, лишенный этого недостатка. Он заключался в косом сталкивании восьми плазменных струй, которые закручивались в кольцо. Их движение при этом напоминало движение вещества в аккреционном диске массивного тела. В эксперименте также образовывались характерные плазменные струи, перпендикулярные плоскости вращения. Установка физиков состояла из алюминиевых проволок толщиной 40 микрометров, расположенных в серединах ребер правильного восьмиугольника. Ученые пропускали через них импульсы большого тока (до 1,4 мегаампера на пике), что приводило к нагреву и абляции вещества. Магнитные поля формировали абляционные потоки и направляли их в середину установки, слегка отклоняя от центра. Столкновение потоков вещества формировало его в кольцо диаметром шесть миллиметров. Оно существовало не более 210 наносекунд, за время которого плазма делала от половины до двух оборотов. Физики следили за ее образованием и развитием в оптическом и экстремально-ультрафиолетовом диапазоне, что позволило исследовать распределение скоростей. Изображения показали, что плазменное кольцо стабильно в течение срока жизни, а само вращение происходит в квазикеплеровском режиме. Авторы также наблюдали плазменную струю, порожденную из вращающегося плазменного столба осевыми градиентами теплового и магнитного давления. Скорость вещества в ней составила 100±20 километров в секунду. Малый угол расходимости — 3±1 градус — свидетельствовал об отсутствии эффектов нестабильности. Струю также окружал плазменный ореол. В будущем авторы планируют продлить время жизни кольца за счет более долгих абляционных импульсов, для чего им потребуется использовать более толстые проволоки. Они убеждены, что замена алюминия на другие материалы позволит контролировать различные параметры магнитнодинамического потока. В будущем это позволит в лаборатории приблизиться к условиям, возникающим в астрофизических процессах, и понять роль нестабильности магнитных полей в аккреции вещества. Аккреционный диск — это не единственное явление, связанное с черными дырами, которое физики пытаются воспроизвести в лабораторных экспериментах. Ранее мы рассказывали, как течение воды в сливе раковины помогает изучать квазисвязанные состояния черных дыр, и как в конденсате Бозе — Эйнштейна подтвердили тепловой спектр излучения Хокинга.