С помощью метода послойного осаждения золотых и оксидных наночастиц на целлюлозные волокна бумаги можно получить гибкий материал, который может быть использован в качестве электрода для суперконденсатора. Группа ученых из Кореи и США показала, что такой материал будет обладать более высокими значениями удельной мощности и плотности энергии по сравнению с аналогами и перспективен для использования в гибкой электронике. Результаты исследования опубликованы в Nature Communications.
Суперконденсаторы (или ионисторы) — устройства, подобные конденсаторам, в которых в роли обкладок выступает двойной электрический слой. Для таких устройств характерна очень большая площадь заряженной поверхности, что сильно увеличивает и их емкость. Поэтому, в отличие от обычных конденсаторов, суперконденсаторы могут использоваться не только как преобразующий элемент в электрических цепях, но и в качестве источников напряжения. Сейчас суперконденсаторы — один из двух основных источников энергии в бытовой технике наряду с литий-ионными аккумуляторами. Если литий-ионные аккумуляторы выигрывают по плотности энергии, то суперконденсаторы предпочтительнее в качестве материала с высокой удельной мощностью.
В своей работе международный коллектив химиков из Кореи и США предложил новый метод получения гибких суперконденсаторов на основе обычной целлюлозной бумаги, которые смогут использоваться, например, в носимых электронных устройствах. Для того, чтобы решить проблемы маленькой емкости и высокого внутреннего сопротивления таких материалов, ученые предложили использовать многослойные структуры с чередующимися проводящими и диэлектрическими слоями.
С помощью послойного осаждения на каждое целлюлозное волокно поочередно наносились слои проводящих и диэлектрических наночастиц диаметром около 10 нанометров. В качестве проводящего материала были использованы наночастицы золота, а в качестве диэлектрика — наночастицы оксидов железа и марганца. Между каждым из слоев наночастиц добавлялся дополнительный слой поверхностно-активного вещества. Для увеличения плотности контакта между наночастицами из разных слоев, в качестве поверхностно-активного вещества была выбрана довольно небольшая молекула трис-(2-аминоэтил)амина.
Анализ проводящих свойств полученной металлизированной бумаги показал, что увеличение количества слоев приводит к линейному увеличению проводимости, и для 16 двойных слоев диэлектрик/проводник на каждой целлюлозной нити в бумаге толщиной 140 микрон достигает 230 сименсов на сантиметр. Устойчивость образовавшегося слоя химики проверили с помощью тестов на изгиб. Оказалось, что даже после 10 тысяч циклов сгибания-разгибания проводимость не падает.
Из нескольких полученных таким образом электродов химики собрали гибкий гибридный суперконденсатор, в котором лист с диэлектрическими слоями из оксида марганца выполнял роль положительного электрода, а лист с диэлектрическими слоями из оксида железа — роль отрицательного электрода. Максимальная поверхностная мощность такого устройства составила 15 милливольт на квадратный сантиметр, а максимальная плотность энергии — около 270 микроватт-часов на квадратный сантиметр. При этом за 5 тысяч циклов перезарядки с плотностью тока в 20 миллиампер на квадратный сантиметр такой суперконденсатор сохранял 90 процентов своей емкости.
По словам ученых, такой материал весьма перспективен, например, для питания носимой электроники. В качестве элементов питания носимых электронных устройств предлагали и другие источники, в частности, браслеты, которые генерируют энергию за счет механических движений руки. А само такое устройство можно, например, напечатать на 3D-принтере.
Александр Дубов
И реагировать на них движениями
Американские инженеры связали на автоматическом станке свитеры для роботов, которые помогают ощущать прикосновения с помощью вшитых датчиков нажима. Свитеры пригодятся, чтобы управлять движениями роботов на производстве. Работа доступна на arXiv.org. Для работы на производстве с людьми, роботам нужно быть очень осторожными, чтобы случайно не травмировать человека. Есть разные способы сделать роботов безопасными, например прикреплять к ним мягкие подушки. Другая идея — научить роботов быстро определять контакт и отодвигаться от человека. В отличие от людей, у роботов нет кожи, но для них можно сделать другую систему для распознавания ощущений из жестких или эластичных материалов, или даже одежду из текстиля, если встроить в нее датчики прикосновений. Одежду можно быстро изготавливать на ткацком станке в промышленных масштабах, и надевать на роботов разных форм и размеров. Группа инженеров из Университета Карнеги под руководством Джеймса МакКанна (James McCann) и Ян Вэньчжэня (Yuan Wenzhen) создала свитеры для роботов, которые могут надежно определять прикосновения. По словам авторов, обычно у текстильных сенсоров есть проблема: они быстро деформируются и перестают надежно работать. Исследователи попробовали с этим справиться, связав свитеры из трех слоев пряжи. Верхний и нижний слой сделаны из обычного нейлона, на котором чередуются широкие и узкие полосы. Широкие полосы сотканы из полиэстеровой металлизированной пряжи, которая хорошо проводит электричество, а узкие полосы изолятора сделаны из акрила. Средний слой — это сетка из района (искусственного шелка). Чем она тоньше, тем выше чувствительность свитера к легким прикосновениям, и наоборот — плотный средний слой подходит для сильных нажатий. Слои ткани с помощью пуговиц с проводами соединяются с устройством для считывания сопротивления, и вместе с ним превращаются в электронную схему. Когда кто-то дотрагивается до свитера, верхний и нижний слои ткани соприкасаются через отверстия в районовой сетке, и сопротивление в системе уменьшается. По сопротивлению можно определить силу нажатия. Инженеры протестировали, насколько надежно устройство определяет силу и место контакта со свитером. Первая серия экспериментов проверяла, как эффективность сенсоров меняется со временем. Эксперименты включали 42 секунды контакта с сенсорами по 20-30 раз на протяжении 4 дней. Авторы не приводят точные цифры результатов, но утверждают что сенсоры показывали стабильные результаты по определению места контакта все 4 дня, с небольшими погрешностями в конце эксперимента. Также исследователи протестировали точность сенсоров на плоской и изогнутой поверхности. На плоской поверхности по сопротивлению датчиков можно было точно определить силу нажатия. На изогнутой поверхности корреляция между сопротивлением и силой нажатия сохранилась, но выросло ее стандартное отклонение. Таким образом, сложность поверхности негативно повлияла на точность определения нажатия. Наконец, инженеры проверили эффективность чувствительных свитеров на роботах. Они надели свитер на робота Kuri, который должен был повернуть голову в ответ на прикосновение. В будущем технологию RobotSweater можно использовать, чтобы обучать роботов: например, похлопать по плечу в качестве похвалы. Пока инженеры показали, как свитеры могут пригодиться на производстве: например, промышленный робот в свитере останавливается и меняет направление движения в ответ на прикосновения. https://www.youtube.com/watch?v=YGUV1dHuCRc Прикосновения может определять не только одежда для роботов, но и искусственная кожа, которую разработала группа ученых из Стэнфордского университета. Пока кожу испытали на крысах, но авторы планируют в будущем встроить ее в человеческие протезы, чтобы улучшить их чувствительность.