Направлением движения поверхностных плазмонных волн, которые используются в оптических микрокомпьютерах для передачи информационного сигнала, можно управлять с помощью диэлектрических наночастиц. Используя такой эффект, ученым из Университета ИТМО удалось разработать демультиплексор со спектральным разрешением в 10 нанометров. Работа опубликована в Laser & Photonics Review.
Идея использовать световые импульсы для передачи информации применяется уже довольно давно и эффективно, например, на ней основан принцип работы оптоволоконного кабеля. Но для того, чтобы использовать ее для работы фотонного компьютера, который хочется еще и уместить на микрочип, использовать сами световые импульсы не получается из-за слишком большой длины волны. Чтобы решить эту проблему, ученые предлагают преобразовывать световую волну в поверхностные плазмонные поляритоны — квазичастицы, представляющие из себя резонансные колебания электронов в приповерхностном слое материала, которые возбуждаются внешним электромагнитным полем и распространяются вдоль поверхности материала. Однако использование их уже сейчас осложняется из-за отсутствия методов управления их движением в зависимости от частоты.
В своем новом исследовании группа физиков из Университета ИТМО предложила использовать для управления движением поверхностных волн диэлектрические наночастицы. Фактически каждая такая частица представляет из себя наноантенну, которая может принимать оптический сигнал в видимом диапазоне. Если поместить ее на подложку из золота, то, принимая входящий сигнал, она будет возбуждать в подложке необходимый поверхностный плазмонный поляритон.
Образующаяся квазичастица обладает магнитным откликом, поэтому направлением ее движения оказалось возможно управлять с помощью поляризованного света. Так, если наноантенна принимает p-поляризованный сигнал, в котором плоскость падения совпадает с направлением вектора электрического поля, то в ней возбуждается три независимых дипольных момента: магнитный дипольный момент вдоль одной из осей, и два электрических дипольных момента вдоль двух других осей. Взаимодействие этих дипольных моментов приводит к запуску поверхностного плазмонного поляритона в одном из направлений. При этом направление оказывается зависимым от длины волны принимаемого сигнала.
«Наличие магнитного отклика на оптических частотах у таких частиц — довольно-таки необычное свойство. Определенные применения магнитному отклику уже были, но оказалось, что это свойство можно использовать для направленного запуска поверхностных волн. Такого до нас никто не предлагал», — комментирует Иван Иорш, один из авторов статьи.
В своей работе в качестве такой антенны ученые использовали наносферу из кремния размером около 300 нанометров. Она может принимать оптические сигналы в видимой части спектра, образуя при этом квазичастицу диаметром около 150 нанометров. Спектральное разрешение такой системы составило около 10 нанометров, что даже превысило теоретические оценки.
По словам ученых, используя такой эффект, можно создать демультиплексор для оптического компьютера — устройство, которое будет направлять полученный сигнал на необходимый выход. Минимальный размер современных устройств, которые могут выполнять такие функции сейчас составляет 5 на 5 микрон. Предложенный же механизм позволит не только значительно уменьшить их размер, но и резко увеличить спектральное разрешение.
Работа таких систем фактически может привести к возможности создания информационных каналов в фотонных компьютерах, в которых, правильно располагая на поверхности чипа диэлектрические антенны, поверхностные волны разных частот можно будет разделять и разводить в разные стороны.
Технологии фотонных компьютеров постоянно совершенствуются: если первый оптоэлектронный процессор разработали еще в 2015 году, то потом для них были разработаны, например, источники закрученного света. А недавно в качестве буфера обмена для оптических сигналов в фотонном компьютере предложили использовать звуковые колебания решетки.
Александр Дубов
Он оказался точнее и эффективнее предыдущих версий
Американские ученые разработали тонкопленочный охладитель, с помощью которого люди с протезами руки могут чувствовать температуру предметов. С помощью полупроводников и сверхрешеток он охлаждается в участках культи, которые воспринимают механические и термические ощущения, что вызывает соответствующие ощущения в фантомной руке. По сравнению с предыдущими термоэлектрическими устройствами эта разработка меньше весит и точнее передает информацию о температуре. Разработка описана в статье журнала Nature Biomedical Engineering. Ученые и биоинженеры разрабатывают все больше интерфейсов, которые позволяют с помощью стимуляции нервов в культе передавать ощущения при использовании протезов, включая давление, вибрацию и боль. Однако пока нет заметных успехов в разработке устройств для ощущения температуры в протезе — все существующие разработки неудобны для повседневного использования из-за большого веса и неэффективного энергопотребления. Генерация реалистичных и информативных тепловых сигналов в протезах позволила бы получать мультимодальную сенсорную информации об окружающей среде в режиме реального времени. Например, определять, температуру напитка, реагировать на горячие предметы или ощущать тепло личного прикосновения. Люк Осборн (Luke Osborn) с коллегами из Университета Джонса Хопкинса выдвинули гипотезу, что технологию тонкопленочного термоэлектрического охлаждения (TFTEC) можно использовать для передачи сигнала с протеза на конкретные рецепторные участки на культе, чтобы создавать полноценное ощущение температуры в фантомной руке. Для этого они разработали неинвазивный термоневральный интерфейс — между термическими стимулами и кожными рецепторами — с использованием устройства TFTEC. В этом устройстве использовались монокристаллические материалы и иерархические сверхрешетки, что придает ему высокую рабочую мощность, плотность охлаждения и, как следствие, быструю и энергоэффективную стимуляцию. Устройство толщиной 1,2 миллиметра и массой 0,05 грамма способно снижать температуру на 10-20 градусов Цельсия за три секунды и удерживать этот температурный градиент в течение длительного времени. В лабораторных условиях эти показатели были значительно лучше, чем у предыдущих, объемных, версий термоэлектрических интерфейсов. Поскольку после ампутации нервы культи могут «иннервировать» фантомную конечность, ученые определили у четырех человек с ампутированной рукой участки культи, которые при механической или термической стимуляции вызывали ощущения прикосновения и температуры в фантомной руке. Устройство TFTEC поместили на кожу четырех участников с ампутацией, чтобы восстановить ощущение температуры в фантомной руке. Все участники ощущали охлаждение c экспериментальным устройством, с контрольным термоэлектрическим устройством эффект почувствовали только два участника. Кроме того, участники быстрее и интенсивнее воспринимали холодовые ощущения на культе и в фантомной руке по сравнению со стандартным объемным устройством. Аналогичные результаты показал эксперимент со здоровыми добровольцами, которые касались устройства указательным пальцем. В другом эксперименте участники управляли виртуальным модульным протезом руки, чтобы прикоснуться к виртуальным объектам и определить холодный. Во всех тестах устройство TFTEC помогало людям быстрее и точнее справиться с заданием по сравнению с классическими устройствами. Наделять протез ощущениями важно, чтобы человек без конечности мог нормально адаптироваться к нему и жизни с ним. Например, недавно мы рассказывали, что тактильная стимуляция облегчила управление протезом руки.