Супергидрофобные поверхности часто используются для снижения сопротивления в жидкости, но обычно эффект не превышает 20 процентов. Международный коллектив ученых показал, что если супергидрофобный или нагретый шарик бросить в воду с достаточной скоростью, то вокруг него образуется пузырек воздуха, который сам автоматически подстраивает свою форму. Это приводит к снижению сопротивления в 10 раз. Работа опубликована в Science Advances.
Супергидрофобные поверхности часто используют для снижения сопротивления в жидкости. Это возможно благодаря тому, что при контакте с водой из-за шероховатости поверхности между твердым телом и жидкостью возникает воздушный слой, в результате чего жидкость течет не вдоль твердого тела, а вдоль газа. Аналогичный эффект можно наблюдать для тел, нагретых до температуры, достаточной для кипения жидкости вокруг них, что приводит к образованию слоя пара. Однако толщина устойчивого газового слоя, который при этом образуется, обычно не превышает пары миллиметров, что приводит к максимальному снижению сопротивления порядка 10-20 процентов. Для создания более толстых воздушных слоев для снижения сопротивления, например, на торпедах используется довольно дорогая технология суперкавитации, при которой воздушный слой необходимой толщины образуется вокруг торпеды с помощью специального кавитатора в головной части снаряда. Стоит отметить, что помимо толщины газового слоя, гидродинамическое сопротивление сильно зависит и от формы снаряда. Сейчас для определения оптимальной формы, как правило, используются довольно трудоемкие компьютерное моделирование или эксперименты в гидродинамической трубе.
В своей новой работе физики показали, что если сферическое тело с необходимыми свойствами поверхности бросить в воду с достаточной скоростью, то вокруг него автоматически формируется газовый пузырь нужной формы, который приводит к практически нулевому сопротивлению. Образование пузыря ученые наблюдали в двух случаях: если поверхность шарика супергидрофобная или если он нагрет до температуры 400 градусов, достаточной для эффекта Лейденфроста. В первом случае шарик захватывает с собой газ при погружении в воду, а во втором — создает вокруг себя необходимое количество пара за счет испарения жидкости.
Оказалось, что для шариков радиусом около 1 миллиметра скорость, необходимая для образования газового пузыря, должна превышать 1 метр в секунду. При этом такой пузырь сам принимает форму, которая необходима для минимального сопротивления. В своей работе ученые оценили максимальный диаметр сечения и длину этого пузыря и показали, что его форма полностью определяется уравнением Бернулли для потенциального течения вокруг такого объекта. Характерно, что эта форма полностью соответствует форме торпеды. Поэтому дополнительно ученые сравнили движение супергидрофобного шарика, брошенного в воду, с движением напечатанной на 3d-принтере модели торпеды для различных плотностей материала.
Оказалось, что коэффициент сопротивления для системы «шарик в пузыре» составляет около 0,02, что примерно в 10 раз меньше, чем для твердой частицы такой же формы, но с гидрофильной поверхностью. При этом скорость всей этой системы из-за необходимости удовлетворять уравнению Бернулли тоже не случайная, а полностью определяется силой тяжести, то есть плотностью материала, из которого шарик состоит.
Таким образом, автоматическая настройка необходимой формы и возможность управления скоростью объекта, вероятно, смогут быть использованы в дальнейшем для управления гидродинамическим сопротивлением в жидкостях и получения объектов с почти нулевым сопротивлением. Стоит отметить, что разнообразие способов применения супергидрофобных поверхностей довольно велико и не ограничивается только снижением сопротивления. Также они могут быть использованы в качестве противоолединительных и водоотталкивающих поверхностей, а также, например, для управления полетом капель или охлаждения процессоров.
Александр Дубов
Он расходится с последними теоретическими предсказаниями со статистической значимостью в 5σ
Физики представили новые результаты эксперимента Muon g-2 в Фермилабе по измерению аномального магнитного момента мюона. Согласно анализу данных двух новых сеансов измерений, физикам удалось больше чем в два раза уменьшить неопределенность измеренного значения. С учетом всех собранных Muon g-2 экспериментальных данных, новый результат противоречит последним предсказаниям Стандартной модели со статистической значимостью в 5,0σ. Согласно авторам статьи, препринт которой доступен на сайте эксперимента, статистическая значимость расхождения, вероятно, ослабнет, если включить в расчет предсказаний недавно опубликованные теоретические и экспериментальные результаты других коллабораций. Также о результатах эксперимента рассказывается на сайте ИЯФ имени Будкера, а запись научного семинара с докладом о последних результатах Muon g-2 доступна на YouTube.Значение магнитного момента мюона — одна из немногих напрямую измеряемых аномалий в современной физике, которая может указывать на существования физики за пределами Стандартной модели. Дело в том, что в это значение вносит вклад взаимодействие этого тяжелого лептона с существующими в нашей модели Вселенной виртуальными частицами. За счет большой массы мюона такой вклад различим на фоне хорошо предсказываемых электромагнитных поправок. Он же позволяет судить о существовании потенциально неоткрытых полей и частиц: расхождения измеренного значения магнитного момента и теоретических расчетов может указывать на неполноту теории. Однако сложность таких измерений в том, что относительная разница измеренного экспериментом и предсказанного теорией значений может проявляться только в шестом знаке после запятой. Для достижения такой точности измерений необходим большой массив экспериментальных данных, а также уверенность в том, что из их анализа были исключены любые систематические вклады и неопределенности в теории. Кроме того, сами предсказания Стандартной модели обладают погрешностью и зависят от параметров существующих в ней частиц и процессов. Два года назад мы уже рассказывали о природе аномального магнитного момента мюона и о том, как эксперимент Muon g-2 впервые увидел расхождение теории и эксперимента. Тогда в совокупности с данными двадцатилетней давности эксперимента-предшественника E821 в Брукхейвенской национальной лаборатории статистическая значимость расхождения составила 4,2 стандартных отклонения (или 4,2σ), чего лишь немного не хватило до общепринятого порога официального открытия в 5σ. Вчера участники коллаборации Muon g-2, в том числе физики из институтов Великобритании, Германии, Италии, Китая, России и США, представили результаты анализа данных двух новых сеансов измерений, которые состоялись в 2019 и 2020 годах. Полученное значение аномального магнитного момента совпало в пределах погрешности с результатами за первый сеанс измерений и эксперимента E821, а относительную точность измерения удалось уменьшить больше чем в два раза: с 0,46 до 0,20 миллионных долей. Как и в первом сеансе набора данных, магнитный момент мюона физики измеряли через разность циклотронной частоты и частоты спиновой прецессии поляризованных антимюонов (частица с противоположным по знаку мюону зарядом, но теми же свойствами) в накопительном кольце в сильном магнитном поле. Эта разность частот пропорциональна абсолютной величине аномального магнитного момента мюона и магнитному полю. Поэтому непрерывно измеряя магнитные поля внутри кольца с помощью ЯМР-проб, физики могли получить искомое значение магнитного момента. При этом сам антимюон в накопительном кольце достаточно быстро распадался на два нейтрино и позитрон, который за счет меньшей массы отклонялся в сторону внутреннего радиуса накопительного кольца, покрытого калориметрами. Искомую разность частот измеряли по колебаниям в количестве электронов, зарегистрированных с помощью этих детекторов. Столь сильно уменьшить погрешность измерений физикам удалось не только за счет увеличения количества набранных данных в 5 раз, но и благодаря оптимизации установки и процесса анализа данных. К примеру, ученые обернули кольцо в теплоизолирующий кожух и улучшили систему кондиционирования экспериментального холла, чтобы уменьшить колебания температуры, которые влияли на магнитное поле внутри установки. Большой вклад также внесли улучшение хранения пучка в кольце и оптимизация квадрупольных и дипольных магнитов в установке с обновленной техникой измерения их влияния на динамику пучка. В результате систематическая погрешность измерений составила всего 0,07 миллионных долей, что уже меньше цели эксперимента в 0,1 миллионных долей. К 2025 году физики собираются достигнуть цель и по статистической погрешности за счет обработки данных еще 3 сеансов набора данных, проведенных в 2021-2023 годах. Формально, с учетом всех собранных данных, измеренное экспериментом Muon g-2 значение аномального магнитного момента мюона уже сейчас противоречит предсказаниям Стандартной модели со статистической значимостью в 5σ, а с учетом данных эксперимента E821 — в 5,1σ. Однако участники коллаборации предостерегают от поспешных выводов: это сравнения с устаревшим расчетом теоретической группы эксперимента, опубликованным в 2020 году. По мнению ученых, недавно опубликованные данные эксперимента КМД-3 в Институте ядерной физики имени Будкера и теоретические расчеты коллаборации BMW должны повлиять на теоретические предсказания и потенциально сблизить их с экспериментально полученным значением. Еще одно прямое указание на Новую физику — переносчик слабого взаимодействия W-бозон. Год назад мы рассказывали о том, что измеренное коллаборацией CDF значение массы этой частицы разошлось с предсказаниями Стандартной модели на 7 стандартных отклонений.