Японские ученые смоделировали более трехсот возможных кристаллических структур льда и определили, какая из них является наиболее устойчивой при отрицательных давлениях и низких температурах. Оказалось, что она имеет низкую плотность и пористую структуру. Статья опубликована в The Journal of Chemical Physics.
Льдом называется твердое агрегатное состояние воды. На данный момент экспериментально найдено 17 различных фазовых состояний льда, включая метастабильные. Они пронумерованы в порядке открытия и существуют при разных значениях давления и температуры. Вообще говоря, такое разнообразие кристаллических структур для вещества необычно, а большое число форм водяного льда обусловлено тем, что молекулы воды предпочитают выстраиваться в сети благодаря водородным связям.
Свойства льда при больших давлениях и температурах на данный момент хорошо изучены. Гораздо хуже исследовано поведение молекул воды при отрицательных давлениях, то есть в ситуациях, когда к образцу приложена растягивающая сила. Обычно (при нулевом или небольшом положительном давлении) фаза пара является термодинамически наиболее стабильной, но твердые фазы могут оказаться метастабильными при низких температурах и больших отрицательных давлениях. В своей работе авторы задаются вопросом, какая фаза является самой стабильной при таких экстремальных условиях.
Для этого ученые с помощью метода молекулярной динамики провели исчерпывающий анализ более чем трехсот кристаллических структур льда, основанных на цеолитах и клатратных соединениях. Оказалось, что при больших отрицательных давлениях цеолитный лед является более стабильным, чем исследованные ранее типы. Также ученые предложили новые структуры льда произвольной плотности, которые даже более стабильны, чем цеолитный лед (zeolitic ice).
Образцы кристаллических структур исследователи получили следующим образом. Для начала они брали одну из цеолитных структур из базы данных и удаляли из нее атомы кислорода, а также заменяли атомы кремния на кислородные. Затем добавляли в структуру атомы водорода так, чтобы суммарный дипольный момент решетки был нулевым. Одновременно они следили за тем, чтобы получившееся вещество было льдом, то есть чтобы атомов водорода было в два раза больше, чем кислородных. Суммарное количество молекул воды в модели варьировало от 1000 до 10000 из-за различных размеров элементарной ячейки у разных типов льда.
Каждая структура проверялась с помощью численного моделирования (молекулярной динамики) на устойчивость при заданных условиях: температуре 77 кельвинов (при которой начинает кипеть жидкий азот) и давлении 1 бар. Большинство структур быстро (в течение десятых долей наносекунды) коллапсировали, но некоторые образцы оставались стабильны в течение длительного по меркам симуляции времени. Для них ученые вычислили молярный объем и энергию.
Также учеными была предложена новая структура «аэрольда» (aeroice), которая наиболее стабильна при отрицательных давлениях и в то же время имеет низкую плотность. Она была получена модифицированием одной из цеолитных структур путем удлинения призматических ребер. В результате новый лед получился очень пористым и легким: его плотность составляет менее 0.5 грамма на сантиметр кубический.
Сейчас фазы льда при отрицательных давлениях активно исследуются. Например, группа ученых из Испании и Великобритании предсказывала, что структура, основанная на клатратах, будет более стабильна, чем все известные на тот момент формы льда. А китайские ученые искали возможные формы с помощью метода Монте-Карло и оценки термодинамической стабильности. Новая работа авторов поможет понять поведение воды в нанотрубках и нанопорах, а также в биомолекулах, в которых создается большое отрицательное давление.
Ранее мы писали о необычном поведении материалов при больших положительных давлениях. Например, как российские физики установили рекорд статического давления или заставили осмий изменить свои механические свойства.
Дмитрий Трунин
Это первый легкий металл, в котором его удалось обнаружить
Физики впервые зафиксировали орбитальный эффект Холла в легком металле. Для этого они измерили угол изменения направления света при прохождении через титан, который использовали в качестве образца из-за высокой проводимости. Открытие поможет уточнить механизм поведения металлов в магнитном поле, сообщают ученые в Nature. Если проводник с током находится во внешнем магнитном поле, то кроме классического эффекта Холла (возникновение разности потенциалов при протекании тока, перпендикулярного полю) в нем можно увидеть еще две разновидности этого явления: спиновый и орбитальный эффекты Холла. В первом случае из-за разницы в электронной проводимости электронов образуется поток спина: электроны с антипараллельными спинами отклоняются к противоположным сторонам проводника. А во втором — поток орбитального момента: он возникает благодаря действию на электроны силы Лоренца и направлен перпендикулярно току. Ранее считалось, что именно спиновый эффект преобладает в твердых телах с ненулевым значением спин-орбитального взаимодействия. При этом орбитальный эффект не требует спин-орбитального взаимодействия и потому более распространен: для легких металлов (металлы с небольшой плотностью, например алюминий, олово, титан и другие) орбитальная холловская даже превышает спиновую. Однако орбитальный эффект влияет на магнитные свойства металла только косвенно, причем изменения эти настолько малы, что зафиксировать их не удается. Чтобы преодолеть эти ограничения и разглядеть орбитальный эффект Холла в легком металле, физики из Южной Кореи под руководством Хён У Ли (Hyun-Woo Lee) предложили измерять его косвенно — по углу керровского поворота, который характеризует угол наклона плоскости поляризации света при прохождении через материал. Орбитальные токи Холла меняют показатель преломления материала, и, следовательно, угол керровского поворота. В качестве объекта исследования был выбран легкий металл титан — благодаря большой орбитальной кривизне Берри у него текстурированная структура поверхностей Ферми, что, согласно расчетам, должно приводить к очень высокой орбитальной холловской проводимости. С помощью оптической спектроскопии ученым удалось уловить эти изменения — на основании данных спектроскопии они построили график зависимости угла керровского поворота от плотности тока в титане. Зависимость оказалось линейной: чем больше модуль плотности тока, тем больше изменение угла, что подтвердило наличие орбитального эффекта Холла. Его величину ученые определяли по значению эффективной орбитальной холловской проводимости. Оно составило 130h/e обратных ом, это почти в 30 раз меньше расчетной. Причины несоответствия установить не удалось, но ученые собираются провести дополнительные исследования. Несмотря на расхождение с теорией, полученные результаты не только подтвердили наличие орбитального эффекта, но и показали, что именно из-за него в легких металлах возникает и спиновый эффект Холла. То есть чтобы предсказать поведение металлов в магнитном поле, учитывать этот эффект обязательно. У эффекта Холла существует несколько различных механизмов, и каждый из них тщательно исследуется учеными. Например, физики уже изучили, как вакуумные флуктуации нарушили механизм квантового эффекта Холла и придали ультрахолодным атомам дробное квантовое состояние Холла.